Multistage Interband Cascade Thermophotovoltaic Devices with ∼0.2 eV Bandgap

被引:0
|
作者
Huang, Wenxiang [1 ,2 ]
Li, Lu [1 ]
Massengale, Jeremy A. [2 ]
Yang, Rui Q. [1 ]
Mishima, Tetsuya D. [2 ]
Santos, Michael B. [2 ]
机构
[1] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
[2] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA
关键词
Interband cascade; thermophotovoltaic cells; type-II superlattice; voltage-dependent photocurrent;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Five narrow-gap interband-cascade (IC) thermophotovoltaic (TPV) devices were examined, which differed from each other in the number of cascade stages (1-, 3-, 5-, 6- or 7-stages) and the thickness of the InAs/GaSb superlattice absorber. The bandgap of the absorber embedded in the five devices is slightly larger than 0.2 eV at 300 K, which should be the narrowest bandgap ever reported in TPV cells. The largest open-circuit voltage of 691 meV was obtained from the 7-stage device. A comparison between the measured J-V curves and 100%-collected ideal J-V curves clearly showed that the photocurrent of these TPV devices is a function of the applied voltage. These findings further support the advantages of the multi-stage narrow-gap IC structure over the single absorber configuration used in the conventional TPV cells.
引用
收藏
页码:2315 / 2318
页数:4
相关论文
共 47 条
  • [21] Fabrication of 0.6 eV Bandgap In0.69Ga0.31As Thermophotovoltaic Cells and Its System Demonstration
    Yang, Qiaobing
    Zhai, Han
    Lu, Hongbo
    Zheng, Tong
    Li, Ge
    Lei, Renbo
    Jiang, Shuai
    Ma, Ninghua
    Zhang, Wei
    Li, Xinyi
    ENERGY TECHNOLOGY, 2025, 13 (03)
  • [22] Conversion efficiency of resonant cavity enhanced narrow bandgap interband cascade photovoltaic cells
    Huang, Wenxiang
    Yang, Rui Q.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (21)
  • [23] Layer-Dependent Thermophotovoltaic Energy Conversion in 0.5-eV GaInAsSb Devices
    Zhang, Xiao-Long
    Huang, A-Bao
    Wang, Yu
    Lou, Yi-Yi
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (09) : 3706 - 3712
  • [24] Mid-IR Photovoltaic Devices Based on Interband Cascade Structures
    Tian, Zhaobing
    Hinkey, Robert T.
    Yang, Rui Q.
    Klem, John F.
    Johnson, Matthew B.
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 1560 - 1565
  • [25] Type-II interband cascade lasers: From concept to devices
    Yang, RQ
    Physics of Semiconductors, Pts A and B, 2005, 772 : 1553 - 1554
  • [26] Interband Cascade Photovoltaic Devices for Conversion of Mid-IR Radiation
    Hinkey, Robert T.
    Tian, Zhao-Bing
    Rassel, S. M. Shazzad S.
    Yang, Rui Q.
    Klem, John F.
    Johnson, Matthew B.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (02): : 745 - 752
  • [27] GaAs thermophotovoltaic patterned dielectric back contact devices with improved sub-bandgap reflectance
    Arulanandam, Madhan K.
    Steiner, Myles A.
    Tervo, Eric J.
    Young, Alexandra R.
    Kuritzky, Leah Y.
    Perl, Emmett E.
    Narayan, Tarun C.
    Kayes, Brendan M.
    Briggs, Justin A.
    King, Richard R.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 238
  • [28] Improved mid-infrared interband cascade light-emitting devices
    Kim, Chul Soo
    Bewley, William W.
    Merritt, Charles D.
    Canedy, Chad L.
    Warren, Michael V.
    Vurgaftman, Igor
    Meyer, Jerry R.
    Kim, Mijin
    OPTICAL ENGINEERING, 2018, 57 (01)
  • [29] 0.6-eV bandgap In0.69Ga0.31As thermophotovoltaic devices grown on InAsyP1-y step-graded buffers by molecular beam epitaxy
    Hudait, MK
    Lin, Y
    Palmisiano, MN
    Ringel, SA
    IEEE ELECTRON DEVICE LETTERS, 2003, 24 (09) : 538 - 540
  • [30] Reliability Test on Vienna Rectifier for Wide Bandgap Devices in EV Charging Systems
    Balasundaram, Bharaneedharan
    Suresh, P.
    Rajendran, Parvathy
    Lee, It Ee
    Saleel, C. Ahamed
    IEEE ACCESS, 2025, 13 : 3072 - 3089