Sub-pixel target detection using local spatial information in hyperspectral images

被引:1
|
作者
Cohen, Yuval [1 ]
Blumberg, Dan G. [2 ]
Rotman, Stanley R. [3 ]
机构
[1] Ben Gurion Univ Negev, Electroopt Engn Dept, Earth & Planetary Image Facil, POB 653, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Geog & Environm Dev, Earth & Planetary Image Facil, IL-84105 Beer Sheva, Israel
[3] Ben Gurion Univ Negev, Dept Elect & Comp Engn, Earth & Planetary Image Facil, IL-84105 Beer Sheva, Israel
关键词
Hyperspectral; Target detection; Blind test; CONSTRAINED ENERGY MINIMIZATION; DETECTION ALGORITHMS;
D O I
10.1117/12.897431
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We present two methods to improve the well-known algorithms for hyperspectral point target detection: the constrained energy minimization algorithm (CEM), the Generalized Likelihood Ratio Test algorithm (GLRT) and the adaptive coherence estimator algorithm (ACE). The original algorithms rely solely on spectral information and do not use spatial information; this is normally justified in subpixel target detection since the target size is smaller than the size of a pixel. However, we have found that, since the background (and the false alarms) may be spatially correlated and the point spread function can distribute the energy of a point target between several neighboring pixels, we should consider spatial filtering algorithms. The first improvement uses the local spatial mean and covariance matrix which take into account the spatial local mean instead of the global mean. The second considers the fact that the target physical sub-pixel size will appear in a cluster of pixels. We test our algorithms by using the dataset and scoring methodology of the Rochester Institute of Technology (RIT) Target Detection Blind Test project. Results show that both spatial methods independently improve the basic spectral algorithms mentioned above; when used together, the results are even better.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Automated sub-pixel target detection using the LASH hyperspectral sensor
    Acker, A
    Pfeiffer, J
    Farm, B
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 731 - 739
  • [2] Multiple Sub-Pixel Target Detection for Hyperspectral Imaging Systems
    Addabbo, Pia
    Fiscante, Nicomino
    Giunta, Gaetano
    Orlando, Danilo
    Ricci, Giuseppe
    Ullo, Silvia Liberata
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1599 - 1611
  • [3] Swin Transformer for hyperspectral rare sub-pixel target detection
    Girard, Ludovic
    Roy, Vincent
    Eude, Thierry
    Giguere, Philippe
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVIII, 2022, 12094
  • [4] Sub-pixel target detection in LWIR hyperspectral imagery using ground leaving radiance
    Lahaie, Pierre
    Levesque, Josee
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4436 - 4439
  • [5] Hyperspectral data cube segmentation analysis in sub-pixel target detection
    Ben Avraham, Eliya
    Rotman, Stanley R.
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVII, 2021, 11727
  • [6] Selecting optimal bands for sub-pixel target detection in hyperspectral images based on implanting synthetic targets
    Hashjin, Shahram Sharifi
    Boloorani, Ali Darvishi
    Khazai, Safa
    Kakroodi, Ata Abdollahi
    [J]. IET IMAGE PROCESSING, 2019, 13 (02) : 323 - 331
  • [7] Multiple instance hybrid estimator for hyperspectral target characterization and sub-pixel target detection
    Jiao, Changzhe
    Chen, Chao
    McGarvey, Ronald G.
    Bohlman, Stephanie
    Jiao, Licheng
    Zare, Alina
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 146 : 235 - 250
  • [8] SUB-PIXEL MAPPING WITH HYPERSPECTRAL IMAGES USING SUPER-RESOLUTION
    Gaur, S.
    Buddhiraju, K. M.
    Porwal, A.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2459 - 2462
  • [9] A Structured Sub-pixel Target Detector for Hyperspectral Imagery
    Chen Yong
    Zhang Liangpei
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS (ICIG 2009), 2009, : 183 - 188
  • [10] CNN based sub-pixel mapping for hyperspectral images
    Arun, P. V.
    Buddhiraju, K. M.
    Porwal, A.
    [J]. NEUROCOMPUTING, 2018, 311 : 51 - 64