Multiple instance hybrid estimator for hyperspectral target characterization and sub-pixel target detection

被引:49
|
作者
Jiao, Changzhe [1 ]
Chen, Chao [2 ]
McGarvey, Ronald G. [3 ]
Bohlman, Stephanie [4 ]
Jiao, Licheng [1 ]
Zare, Alina [5 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Minist Educ China, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Shaanxi, Peoples R China
[2] MathWorks, Natick, MA 01760 USA
[3] Univ Missouri, Dept Ind & Mfg Syst Engn, Columbia, MO 65211 USA
[4] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[5] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Target detection; Hyperspectral; Endmember extraction; Multiple instance learning; Hybrid detector; Target characterization; MATCHED-FILTER; IMAGE; ALGORITHM; CLASSIFICATION; DICTIONARIES;
D O I
10.1016/j.isprsjprs.2018.08.012
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The Multiple Instance Hybrid Estimator for discriminative target characterization from imprecisely labeled hyperspectral data is presented. In many hyperspectral target detection problems, acquiring accurately labeled training data is difficult. Furthermore, each pixel containing target is likely to be a mixture of both target and non-target signatures (i.e., sub-pixel targets), making extracting a pure prototype signature for the target class from the data extremely difficult. The proposed approach addresses these problems by introducing a data mixing model and optimizing the response of the hybrid sub-pixel detector within a multiple instance learning framework. The proposed approach iterates between estimating a set of discriminative target and non-target signatures and solving a sparse unmixing problem. After learning target signatures, a signature based detector can then be applied on test data. Both simulated and real hyperspectral target detection experiments show the proposed algorithm is effective at learning discriminative target signatures and achieves superior performance over state-of-the-art comparison algorithms.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 50 条
  • [1] Multiple Sub-Pixel Target Detection for Hyperspectral Imaging Systems
    Addabbo, Pia
    Fiscante, Nicomino
    Giunta, Gaetano
    Orlando, Danilo
    Ricci, Giuseppe
    Ullo, Silvia Liberata
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1599 - 1611
  • [2] Functions of multiple instances for sub-pixel target characterization in hyperspectral imagery
    Zare, Alina
    Jiao, Changzhe
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXI, 2015, 9472
  • [3] Swin Transformer for hyperspectral rare sub-pixel target detection
    Girard, Ludovic
    Roy, Vincent
    Eude, Thierry
    Giguere, Philippe
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVIII, 2022, 12094
  • [4] Improving hyperspectral sub-pixel target detection in multiple target signatures using a revised replacement signal model
    Khoshboresh-Masouleh, Mehdi
    Hasanlou, Mahdi
    EUROPEAN JOURNAL OF REMOTE SENSING, 2020, 53 (01) : 316 - 330
  • [5] Automated sub-pixel target detection using the LASH hyperspectral sensor
    Acker, A
    Pfeiffer, J
    Farm, B
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 731 - 739
  • [6] Hyperspectral data cube segmentation analysis in sub-pixel target detection
    Ben Avraham, Eliya
    Rotman, Stanley R.
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVII, 2021, 11727
  • [7] A Structured Sub-pixel Target Detector for Hyperspectral Imagery
    Chen Yong
    Zhang Liangpei
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS (ICIG 2009), 2009, : 183 - 188
  • [8] Comparison of hyperspectral sub-pixel detection with and without a priori knowledge of target features
    Robinson, IS
    Nguyen, MH
    Tull, J
    Augustin, S
    Weisberg, A
    Liao, L
    Borowski, B
    1998 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOL 5, 1998, : 183 - 189
  • [9] Sub-pixel target detection using local spatial information in hyperspectral images
    Cohen, Yuval
    Blumberg, Dan G.
    Rotman, Stanley R.
    ELECTRO-OPTICAL REMOTE SENSING, PHOTONIC TECHNOLOGIES, AND APPLICATIONS V, 2011, 8186
  • [10] Multiclass sub-pixel target detection using functions of multiple instances
    Zare, Alina
    Gader, Paul
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVII, 2011, 8048