A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California

被引:0
|
作者
Ducea, M [1 ]
Saleeby, J [1 ]
机构
[1] CALTECH, Div Geol & Planetary Sci 10023, Pasadena, CA 91125 USA
关键词
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Surface exposures as well as deep-crustal and upper-mantle xenoliths constrain the composition of the lithospheric column beneath the Sierra Nevada mountain range (California) as it resulted from the generation of the Mesozoic Sierra Nevada batholith (SNB). After the cessation of magmatism at similar to 80 Ma, the SNB consisted of a similar to 30 to 35 km thick granitic crust underlain by a batholithic "root," a similar to 70 km thick sequence of mafic-ultramafic, mainly eclogite-facies cumulate and residues. The deeper root assemblages consist largely of garnet and pyroxenes that precipitated as igneous cumulate phases during the SNB magmatism. The root assemblages were present beneath the SNB as recently as similar to 8 to 12 Ma, when they were sampled as xenoliths in fast-ascending magmas erupted through the batholith. Several lines of evidence suggest that the eclogitic root may have disapeared from beneath the SNB since Miocene time, leading to a major change in the lithospheric column. There are no garnet-bearing xenoliths in the Pliocene and Quaternary volcanic rocks; instead, all xenolith lithologies found in the younger volcanic outcrops are peridotitic, have equilibrated at depths between 35 and 70 km, possess locked-in temperatures of similar to 1150 to 1200 degrees C, and display an asthenospheric-like adiabatic P-T trend. Some of the Pliocene uppermost-mantle peridotitic xenoliths contain exotic silica-rich glass inclusions that may have originated by partial melting of the eclogitic root. Geophysical evidence suggests that anomalously high seismic velocity may represent eclogitic bodies present at depths of 100 to 200 km beneath the SNB. All of these observations indicate that the "eclogitic" root may have detached and delaminated (sunk) into the underlying mantle, a process compensated by diapiric rise of asthenospheric peridotitic material to the base of the shallow (similar to 35 km) remnant crust. The delamination hypothesis is consistent with observations documenting the existence of a shallow Moho, a low-velocity, partially molten upper mantle observed today beneath the SNB, a gradual change in Miocene volcanism in the Sierra toward more primitive compositions, and significant late Miocene-Pliocene uplift in the area. If the magmatic arc has indeed lost its root, delamination is an important mechanism in the differentiation of the continental crust at Cordilleran-type margins. The present-day crustal column in the Sierra (the SNB) is a mass extracted from the Earth's mantle predominantly during the Phanerozoic, although not necessarily only during batholithic magmatism. The similar to 35 km thick present-day crustal composition of the Sierra Nevada is similar to, or more evolved than, the average continental crust.
引用
收藏
页码:273 / 288
页数:16
相关论文
共 50 条
  • [41] Bedrock Basins in the Sierra Nevada, Alta California
    Moore, James G.
    Gorden, Mary A.
    Sisson, Thomas W.
    CALIFORNIA ARCHAEOLOGY, 2012, 4 (01) : 99 - 122
  • [42] Unusually deep earthquakes in the central Sierra Nevada (California, USA): Foundering ultramafic lithosphere?
    Ryan, Jamie
    Frassetto, Andrew M.
    Hurd, Owen
    Jones, Craig H.
    Unruh, Jeffrey
    Zandt, George
    Gilbert, Hersh
    Owens, Thomas J.
    GEOSPHERE, 2020, 16 (01) : 357 - 377
  • [43] COCORP DEEP SEISMIC-REFLECTION PROFILING IN THE NORTHERN SIERRA-NEVADA, CALIFORNIA
    NELSON, KD
    ZHU, TF
    GIBBS, A
    HARRIS, R
    OLIVER, JE
    KAUFMAN, S
    BROWN, L
    SCHWEICKERT, RA
    TECTONICS, 1986, 5 (02) : 321 - 333
  • [44] STABILITY AND CHANGE IN MINEROTROPHIC PEATLANDS, SIERRA-NEVADA OF CALIFORNIA AND NEVADA
    BARTOLOME, JW
    ERMAN, DC
    SCHWARZ, CF
    USDA FOREST SERVICE PACIFIC SOUTHWEST RESEARCH STATION RESEARCH PAPER, 1990, (198): : R2 - 11
  • [45] Influence of the Pacific Decadal Oscillation on the climate of the Sierra Nevada, California and Nevada
    Benson, L
    Linsley, B
    Smoot, J
    Mensing, S
    Lund, S
    Stine, S
    Sarna-Wojcicki, A
    QUATERNARY RESEARCH, 2003, 59 (02) : 151 - 159
  • [47] UPPER MANTLE LATERAL HETEROGENEITY BENEATH SIERRA-NEVADA
    MAVKO, B
    THOMPSON, GA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (12): : 1134 - 1134
  • [48] Deep lithospheric dynamics beneath the Sierra Nevada during the Mesozoic and Cenozoic as inferred from xenolith petrology
    Lee, CT
    Rudnick, RL
    Brimhall, GH
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2001, 2
  • [49] RAIN-INDUCED OUTFLOW FROM DEEP SNOWPACKS IN THE CENTRAL SIERRA-NEVADA, CALIFORNIA
    BERG, N
    OSTERHUBER, R
    BERGMAN, J
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1991, 36 (06): : 611 - 629
  • [50] COOL WATER FORMATION AND TROUT HABITAT USE IN A DEEP POOL IN THE SIERRA-NEVADA, CALIFORNIA
    MATTHEWS, KR
    BERG, NH
    AZUMA, DL
    LAMBERT, TR
    TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY, 1994, 123 (04) : 549 - 564