Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus

被引:204
|
作者
Kushner, DB
Lindenbach, BD
Grdzelishvili, VZ
Noueiry, AO
Paul, SM
Ahlquist, P
机构
[1] Univ Wisconsin, Inst Mol Virol, Madison, WI 53706 USA
[2] Univ Wisconsin, Howard Hughes Med Inst, Madison, WI 53706 USA
关键词
D O I
10.1073/pnas.2536857100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Positive-strand RNA viruses are the largest virus class and include many pathogens such as hepatitis C virus and the severe acute respiratory syndrome coronavirus (SARS). Brome mosaic virus (BMV) is a representative positive-strand RNA virus whose RNA replication, gene expression, and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. By using traditional yeast genetics, host genes have been identified that function in controlling BMV translation, selecting BMV RNAs as replication templates, activating the replication complex, maintaining a lipid composition required for membrane-associated RNA replication, and other steps. To more globally and systematically identify such host factors, we used engineered BMV derivatives to assay viral RNA replication in each strain of an ordered, genome-wide set of yeast single-gene deletion mutants. Each deletion strain was transformed to express BMV replicase proteins and a BMV RNA replication template with the capsid gene replaced by a luciferase reporter. Luciferase expression, which is dependent on viral RNA replication and RNA-dependent mRNA synthesis, was measured in intact yeast cells. Approximately 4,500 yeast deletion strains (approximate to80% of yeast genes) were screened in duplicate and selected strains analyzed further. This functional genomics approach revealed nearly 100 genes whose absence inhibited or stimulated BMV RNA replication and/or gene expression by 3- to >25-fold. Several of these genes were shown previously to function in BMV replication, validating the approach. Newly identified genes include some in RNA, protein, or membrane modification pathways and genes of unknown function. The results further illuminate virus and cell pathways. Further refinement of virus screening likely will reveal contributions from additional host genes.
引用
收藏
页码:15764 / 15769
页数:6
相关论文
共 50 条
  • [31] Saccharomyces cerevisiaeas a model host for studying gene expression and RNA replication of positive-strand RNA viruses
    Rubino, L
    Russo, M
    JOURNAL OF PLANT PATHOLOGY, 2005, 87 (02) : 79 - 89
  • [32] GENOME EXPRESSION OF PLANT POSITIVE-STRAND RNA VIRUSES
    DAVIES, JW
    HULL, R
    JOURNAL OF GENERAL VIROLOGY, 1982, 61 (JUL): : 1 - 14
  • [33] Importance of the positive-strand RNA secondary structure of a murine coronavirus defective interfering RNA internal replication signal in positive-strand RNA synthesis
    Repass, JF
    Makino, S
    JOURNAL OF VIROLOGY, 1998, 72 (10) : 7926 - 7933
  • [34] Yeast screens for host factors in positive-strand RNA virus replication based on a library of temperature-sensitive mutants
    Nawaz-ul-Rehman, Muhammad Shah
    Prasanth, K. Reddisiva
    Baker, Jannine
    Nagy, Peter D.
    METHODS, 2013, 59 (02) : 207 - 216
  • [35] Organelle-Like Membrane Compartmentalization of Positive-Strand RNA Virus Replication Factories
    den Boon, Johan A.
    Ahlquist, Paul
    ANNUAL REVIEW OF MICROBIOLOGY, VOL 64, 2010, 2010, 64 : 241 - 256
  • [36] REPLICATION OF THE GENOMIC RNA OF A POSITIVE-STRAND RNA ANIMAL VIRUS FROM NEGATIVE-SENSE TRANSCRIPTS
    BALL, LA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) : 12443 - 12447
  • [37] Genome-Wide Analysis of Host Factors in Nodavirus RNA Replication
    Hao, Linhui
    Lindenbach, Brett
    Wang, Xiaofeng
    Dye, Billy
    Kushner, David
    He, Qiuling
    Newton, Michael
    Ahlquist, Paul
    PLOS ONE, 2014, 9 (04):
  • [38] Mechanisms and consequences of positive-strand RNA virus recombination
    Bentley, Kirsten
    Evans, David J.
    JOURNAL OF GENERAL VIROLOGY, 2018, 99 (10): : 1345 - 1356
  • [39] Replication of positive-strand RNA viruses in plants:: contact points between plant and virus components
    Sanfaçon, H
    CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 2005, 83 (12): : 1529 - 1549
  • [40] Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses
    Hyodo, Kiwamu
    Okuno, Tetsuro
    CURRENT OPINION IN VIROLOGY, 2016, 17 : 11 - 18