On commutativity of rings involving certain polynomial constraints

被引:0
|
作者
Abujabal, HAS
Ashraf, M
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21497, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
commutator; commutator ideal; center; nilpotent element; polynomial identity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let m greater than or equal to 0 and n > 1 be fixed integers. Let R be a ring with unity 1 satisfying the condition that, for every y in R, there exist polynomials f(x) epsilon X(2)Z[X] and g(X), h(X) epsilon Z[X] depending on y such that x(m)[x(n),y] = g(y)[x, f(y)]h(y) for all a in R. The main result of the present paper asserts that R is commutative if R has the property Q(n), i.e., for all x,y in R, n[a,y] = 9 implies [x,y] = 0.
引用
收藏
页码:111 / 116
页数:6
相关论文
共 50 条
  • [31] Commutativity of Involutorial Rings with Constraints on Left Multipliers
    Oukhtite, L.
    Taoufiq, L.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2011, 2 (01): : 15 - 20
  • [32] SOME POLYNOMIAL-IDENTITIES THAT IMPLY COMMUTATIVITY FOR RINGS
    ASHRAF, M
    QUADRI, MA
    ZELINSKY, D
    AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (04): : 336 - 339
  • [33] COMMUTATIVITY OF RIGS SATISFYING CERTAIN POLYNOMIAL-IDENTITIES
    ABUKHUZAM, H
    BELL, H
    YAQUB, A
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1991, 44 (01) : 63 - 69
  • [34] COMMUTATIVITY CRITERIA OF PRIME RINGS INVOLVING TWO ENDOMORPHISMS
    Dakir, Souad
    Mamouni, Abdellah
    Tamekkante, Mohammed
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (03): : 659 - 667
  • [35] ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS
    Park, Kyoo-Hong
    Jung, Yong-Soo
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 22 (01): : 41 - 51
  • [36] RINGS SATISFYING POLYNOMIAL CONSTRAINTS
    PUTCHA, MS
    YAQUB, A
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (01) : 115 - 124
  • [37] IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS
    Balmaceda, Jose Maria P.
    Datu, Joanne Pauline P.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 1 - 12
  • [38] Some commutativity theorems for rings with involution involving generalized derivations
    Idrissi, My Abdallah
    Oukhtite, Lahcen
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (01)
  • [39] Commutativity of Near-rings With Certain Constrains on Jordan Ideals
    Boua, Abdelkarim
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (04): : 159 - 170
  • [40] POLYNOMIAL CONSTRAINTS FOR FINITENESS OF SEMISIMPLE RINGS
    PUTCHA, MS
    YAQUB, A
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 57 (02) : 519 - 530