Techno-economic evaluation of methanol production via gasification of vacuum residue and conventional reforming routes

被引:11
|
作者
Al-Rowaili, Fayez Nasir [1 ,2 ]
Khalafalla, Siddig S. [1 ]
Al-Yami, Dhaffer S. [2 ]
Jamal, Aqil [2 ]
Ahmed, Usama [1 ,3 ]
Zahid, Umer [1 ,4 ]
Al-Mutairi, Eid M. [1 ,5 ]
机构
[1] King Fahd Univ Petr & Minerals, Chem Engn Dept, Dhahran 31261, Saudi Arabia
[2] Saudi Aramco, Res & Dev Ctr, Dhahran 31311, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen & Energy Stora, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
[5] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Refining & Adv Chem, Dhahran 31261, Saudi Arabia
来源
关键词
Methanol; Carbon capture and utilization; Vacuum residue gasification; Economic analysis; Process simulation; NATURAL-GAS; HYDROGEN-PRODUCTION; FUEL-OIL; SIMULATION; CO2; OPTIMIZATION;
D O I
10.1016/j.cherd.2021.11.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The continuous rise of global carbon emissions demands the utilization of fossil fuels in a cleaner and sustainable way. Gasification is a potential technology that can convert the dirty fossil fuels for the production of clean and environment friendly fuels in an economical manner. In this study, vacuum residue is employed as a feedstock to produce high grade methanol. A vacuum residue to methanol (VRTM) process is simulated using Aspen Plus for a methanol production capacity of 90 t/h with 99.9 wt.% purity. The developed VRTM process is bench-marked with the conventional steam reforming to methanol (SRTM) process through energy, environmental and economic analysis. The performance of vacuum residue gasifier, natural gas reformer and the methanol synthesis reactor are validated against the plant data and the simulation results are found to be in good agreement. The results showed that the VRTM process offers a process energy efficiency of 49.5% which is 1.6% higher than the SRTM process. The unit cost of methanol product from the VRTM process is $ 317/tCH(3)OH which is 14% lower compared to the SRTM process. In terms of environmental analysis, SRTM process emits less carbon emissions than the VRTM process. However, the VRTM process offers a high purity captured CO2 stream that can be utilized for another application that can further offset the methanol production cost. (C) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:365 / 375
页数:11
相关论文
共 50 条
  • [1] Techno-Economic Evaluation of Hydrogen Production via Gasification of Vacuum Residue Integrated with Dry Methane Reforming
    Al-Rowaili, Fayez Nasir
    Khalafalla, Siddig S.
    Jamal, Aqil
    Al-Yami, Dhaffer S.
    Zahid, Umer
    Al-Mutairi, Eid M.
    [J]. SUSTAINABILITY, 2021, 13 (24)
  • [2] Comparative techno-economic assessment of methanol production via directly and indirectly electrified biomass gasification routes
    Klueh, Daniel
    Anetjarvi, Eemeli
    Melin, Kristian
    Vakkilainen, Esa
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2024, 314
  • [3] Techno-economic evaluation of simultaneous methanol and hydrogen production via autothermal reforming of natural gas
    Zahid, Umer
    Khalafalla, Siddig S.
    Alibrahim, Hussain A.
    Ahmed, Usama
    Jameel, Abdul Gani Abdul
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2023, 296
  • [4] Techno-economic assessment of hydrogen production via dimethylether steam reforming and methanol steam reforming
    Rahatade, Shardul S.
    Mali, Nilesh A.
    [J]. INDIAN CHEMICAL ENGINEER, 2023, 65 (04) : 352 - 368
  • [5] A new approach for producing methanol via process integration of vacuum residue gasification and NG reforming aiming at low CO2 emissions, an extensive techno-economic study
    Al-Rowaili, Fayez Nasir
    Zahid, Umer
    Khalafalla, Siddig S.
    Jamal, Aqil
    Al-Mutairi, Eid M.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2024, 284
  • [6] Techno-economic assessment of catalytic gasification of biomass powders for methanol production
    Carvalho, Lara
    Furusjo, Erik
    Kirtania, Kawnish
    Wetterlund, Elisabeth
    Lundgren, Joakim
    Anheden, Marie
    Wolf, Jens
    [J]. BIORESOURCE TECHNOLOGY, 2017, 237 : 167 - 177
  • [7] Alternative sustainable routes to methanol production: Techno-economic and environmental assessment
    Scomazzon, Marco
    Barbera, Elena
    Bezzo, Fabrizio
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03):
  • [8] Comparison and techno-economic evaluation of process routes for lower olefin production via Fischer-Tropsch and methanol synthesis
    Markowitsch, Christoph
    Lehner, Markus
    Maly, Markus
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 129
  • [9] Techno-economic analysis of ammonia production via integrated biomass gasification
    Andersson, Jim
    Lundgren, Joakim
    [J]. APPLIED ENERGY, 2014, 130 : 484 - 490
  • [10] Techno-economic analysis of gasification routes for ammonia production from Victorian brown coal
    Habgood, David C. C.
    Hoadley, Andrew F. A.
    Zhang, Lian
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2015, 102 : 57 - 68