ON THE METRIC DIMENSION OF CIRCULANT GRAPHS WITH 2 GENERATORS

被引:0
|
作者
Du Toit, L. [1 ]
Vetrik, T. [2 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Pretoria, South Africa
[2] Univ Free State, Dept Math & Appl Math, POB 339, ZA-9300 Bloemfontein, South Africa
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2019年 / 43卷 / 01期
基金
新加坡国家研究基金会; 芬兰科学院;
关键词
Metric dimension; resolving set; circulant graph; distance;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set of vertices W resolves a connected graph G if every vertex of G is uniquely determined by its vector of distances to the vertices in W. The number of vertices in a smallest resolving set is called the metric dimension and it is denoted by dim(G). We study the circulant graphs C-n (2, 3) with the vertices v(0), v(1), v(2), ... , v(n-1) and the edges v(i)v(i+2), v(i)v(i+3), where i = 0, 1, 2, ... , n - 1, the indices are taken modulo n. We show that for n >= 26 we have dim(C-n (2, 3)) = 3 if n equivalent to 4 (mod 6), dim(C-n (2, 3)) = 4 if n equivalent to 0, 1, 5 (mod 6) and 3 <= dim(C-n (2, 3)) <= 4 if n equivalent to 2, 3 (mod 6).
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [2] Metric Dimension of Circulant Graphs with 5 Consecutive Generators
    Knor, Martin
    Skrekovski, Riste
    Vetrik, Tomas
    [J]. MATHEMATICS, 2024, 12 (09)
  • [3] On the metric dimension of circulant graphs
    Gao, Rui
    Xiao, Yingqing
    Zhang, Zhanqi
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 328 - 337
  • [4] The Metric Dimension of Circulant Graphs
    Vetrik, Tomas
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 206 - 216
  • [5] On the metric dimension of circulant graphs
    Imran, Muhammad
    Baig, A. Q.
    Bokhary, Syed Ahtsham Ul Haq
    Javaid, Imran
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 320 - 325
  • [6] On the metric dimension of circulant and Harary graphs
    Grigorious, Cyriac
    Manuel, Paul
    Miller, Mirka
    Rajan, Bharati
    Stephen, Sudeep
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 47 - 54
  • [8] The metric dimension of circulant graphs and Cayley hypergraphs
    Borchert, Adam
    Gosselin, Shonda
    [J]. UTILITAS MATHEMATICA, 2018, 106 : 125 - 147
  • [9] Fault-Tolerant Metric Dimension of Circulant Graphs
    Saha, Laxman
    Lama, Rupen
    Tiwary, Kalishankar
    Das, Kinkar Chandra
    Shang, Yilun
    [J]. MATHEMATICS, 2022, 10 (01)
  • [10] Sharp lower bounds on the metric dimension of circulant graphs
    Knor, Martin
    Skrekovski, Riste
    Vetrik, Tomas
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,