The Metric Dimension of Circulant Graphs

被引:16
|
作者
Vetrik, Tomas [1 ]
机构
[1] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
基金
新加坡国家研究基金会;
关键词
REGULAR GRAPHS; PRODUCT;
D O I
10.4153/CMB-2016-048-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subset W of the vertex set of a graph G is called a resolving set of G if for every pair of distinct vertices u,v of G, there is w is an element of W such that the distance of w and u is different from the distance of w and v. The cardinality of a smallest resolving set is called the metric dimension of G, denoted by dim(G). The circulant graph C-n (1, 2,..., t) consists of the vertices v0,v1..... vn-1 and the edges vivi+j, where 0 <= i <= n-1,1 <= j <= t (2 < t < L[n/2]), the indices are taken modulo n. Grigorious, Manuel, Miller, Rajan, and Stephen proved that dim(Cn (1, 2,...., t)) >=_ t + 1 for t <[n/2],n >= 3, and they presented a conjecture saying that dim(Cn (1, 2,..., t)) = t + p -1 for n = 2tk + t + p, where 3 < p < t + 1. We disprove both statements. We show that if t 4 is even, there exists an infinite set of values of n such that dim( Cn (1, 2,..., t)) = t+p. We also prove that dim(Cn (1, 2,... t))<t+p/2 for n = 2tk + t + p, where t and p are even, t >= 4, 2 <= p <= t, and k >= 1.
引用
收藏
页码:206 / 216
页数:11
相关论文
共 50 条
  • [1] On the metric dimension of circulant graphs
    Gao, Rui
    Xiao, Yingqing
    Zhang, Zhanqi
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 328 - 337
  • [2] On the metric dimension of circulant graphs
    Imran, Muhammad
    Baig, A. Q.
    Bokhary, Syed Ahtsham Ul Haq
    Javaid, Imran
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 320 - 325
  • [3] On the metric dimension of circulant and Harary graphs
    Grigorious, Cyriac
    Manuel, Paul
    Miller, Mirka
    Rajan, Bharati
    Stephen, Sudeep
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 47 - 54
  • [6] ON THE METRIC DIMENSION OF CIRCULANT GRAPHS WITH 2 GENERATORS
    Du Toit, L.
    Vetrik, T.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (01): : 49 - 58
  • [7] The metric dimension of circulant graphs and Cayley hypergraphs
    Borchert, Adam
    Gosselin, Shonda
    [J]. UTILITAS MATHEMATICA, 2018, 106 : 125 - 147
  • [8] Fault-Tolerant Metric Dimension of Circulant Graphs
    Saha, Laxman
    Lama, Rupen
    Tiwary, Kalishankar
    Das, Kinkar Chandra
    Shang, Yilun
    [J]. MATHEMATICS, 2022, 10 (01)
  • [9] Metric Dimension of Circulant Graphs with 5 Consecutive Generators
    Knor, Martin
    Skrekovski, Riste
    Vetrik, Tomas
    [J]. MATHEMATICS, 2024, 12 (09)
  • [10] Sharp lower bounds on the metric dimension of circulant graphs
    Knor, Martin
    Skrekovski, Riste
    Vetrik, Tomas
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,