Temperature dependency of state of charge inhomogeneities and their equalization in cylindrical lithium-ion cells

被引:25
|
作者
Osswald, P. J. [1 ,2 ]
Erhard, S. V. [1 ]
Rheinfeld, A. [1 ]
Rieger, B. [1 ]
Hoster, H. E. [3 ]
Jossen, A. [1 ]
机构
[1] Tech Univ Munich, Inst Elect Energy Storage Technol EES, Munich, Germany
[2] TUM CREATE Ltd, Singapore, Singapore
[3] Univ Lancaster, Energy Lancaster, Lancaster, England
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Current density distribution; Local potential measurements; SOC inhomogeneity; Temperature dependency; IMPEDANCE MEASUREMENTS; LOCAL POTENTIALS; BATTERIES; SIMULATION; DISCHARGE; ELECTRODE; BEHAVIOR; DENSITY; DESIGN; IMPACT;
D O I
10.1016/j.jpowsour.2016.08.120
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of cell temperature on the current density distribution and accompanying inhomogeneities in state of charge (SOC) during cycling is analyzed in this work. To allow for a detailed insight in the electrochemical behavior of the cell, commercially available 26650 cells were modified to allow for measuring local potentials at four different, nearly equidistant positions along the electrodes. As a follow-up to our previous work investigating local potentials within a cell, we apply this method for studying SOC deviations and their sensitivity to cell temperature. The local potential distribution was studied during constant current discharge operations for various current rates and discharge pulses in order to evoke local inhomogeneities for temperatures ranging from 10 degrees C to 40 degrees C. Differences in local potentials were considered for estimating local SOC variations within the electrodes. It could be observed that even low currents such as 0.1C can lead to significant inhomogeneities, whereas a higher cell temperature generally results in more pronounced inhomogeneities. A rapid SOC equilibration can be observed if the variation in the SOC distribution corresponds to a considerable potential difference defined by the open circuit voltage of either the positive or negative electrode. With increasing temperature, accelerated equalization effects can be observed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:546 / 552
页数:7
相关论文
共 50 条
  • [31] Fast Estimation of State of Charge for Lithium-Ion Batteries
    Wu, Shing-Lih
    Chen, Hung-Cheng
    Chou, Shuo-Rong
    ENERGIES, 2014, 7 (05) : 3438 - 3452
  • [32] Modeling and state of charge estimation of lithium-ion battery
    Xi-Kun Chen
    Dong Sun
    Advances in Manufacturing, 2015, 3 : 202 - 211
  • [33] Adaptive Estimation of State of Charge for Lithium-ion Batteries
    Fang, Huazhen
    Wang, Yebin
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3485 - 3491
  • [34] Review of lithium-ion battery state of charge estimation
    Ning Li
    Yu Zhang
    Fuxing He
    Longhui Zhu
    Xiaoping Zhang
    Yong Ma
    Shuning Wang
    Global Energy Interconnection, 2021, 4 (06) : 619 - 630
  • [35] Modeling and state of charge estimation of lithium-ion battery
    Chen, Xi-Kun
    Sun, Dong
    ADVANCES IN MANUFACTURING, 2015, 3 (03) : 202 - 211
  • [36] Review of lithium-ion battery state of charge estimation
    Li, Ning
    Zhang, Yu
    He, Fuxing
    Zhu, Longhui
    Zhang, Xiaoping
    Ma, Yong
    Wang, Shuning
    GLOBAL ENERGY INTERCONNECTION-CHINA, 2021, 4 (06): : 619 - 630
  • [37] An adaptive state of charge estimator for lithium-ion batteries
    Ali, Muhammad U.
    Khan, Hafiz F.
    Masood, Haris
    Kallu, Karam D.
    Ibrahim, Malik M.
    Zafar, Amad
    Oh, Semin
    Kim, Sangil
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (07) : 2333 - 2347
  • [38] Efficient estimation of state of charge of lithium-ion batteries
    Zhu, Jianxin
    Li, Qi
    MEASUREMENT, 2024, 225
  • [39] Fast Estimation of State of Charge for Lithium-ion Battery
    Chen, Hung-Cheng
    Chou, Shuo-Rong
    Chen, Hong-Chou
    Wu, Shing-Lih
    Chen, Liang-Rui
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 284 - 287
  • [40] Estimation of state of charge for lithium-ion batteries - A Review
    Attanayaka, A. M. S. M. H. S.
    Karunadasa, J. P.
    Hemapala, K. T. M. U.
    AIMS ENERGY, 2019, 7 (02) : 186 - 210