Simulating macroscopic quantum correlations in linear networks

被引:5
|
作者
Dellios, A. [1 ]
Drummond, Peter D. [1 ]
Opanchuk, Bogdan [1 ]
Teh, Run Yan [1 ]
Reid, Margaret D. [1 ]
机构
[1] Swinburne Univ Technol, Melbourne, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
Quantum; Network; Simulation; Phase-space; GBS; Einstein-Podolsky-Rosen; PODOLSKY-ROSEN PARADOX; COHERENT; REPRESENTATIONS; STATES;
D O I
10.1016/j.physleta.2021.127911
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many developing quantum technologies make use of quantum networks of different types. Even linear quantum networks are nontrivial, as the output photon distributions can be exponentially complex. Despite this, they can still be computationally simulated. The methods used are transformations into equivalent phase-space representations, which can then be treated probabilistically. This provides an exceptionally useful tool for the prediction and validation of experimental results, including decoherence. As well as experiments in Gaussian boson sampling, which are intended to demonstrate quantum computational advantage, these methods are applicable to other types of entangled linear quantum networks as well. This paper provides a tutorial and review of work in this area, to explain quantum phase-space techniques using the positive-P and Wigner distributions. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Hierarchy of quantum correlations using a linear beam splitter
    Qureshi, Haleema Sadia
    Ullah, Shakir
    Ghafoor, Fazal
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [42] Hierarchy of quantum correlations using a linear beam splitter
    Haleema Sadia Qureshi
    Shakir Ullah
    Fazal Ghafoor
    [J]. Scientific Reports, 8
  • [43] Dimensional crossover in quantum networks:: From macroscopic to mesoscopic physics
    Schopfer, Felicien
    Mallet, Francois
    Mailly, Dominique
    Texier, Christophe
    Montambaux, Gilles
    Bauerle, Christopher
    Saminadayar, Laurent
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (02)
  • [44] Simulating all Nonsignaling Correlations via Classical or Quantum Theory with Negative Probabilities
    Al-Safi, Sabri W.
    Short, Anthony J.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (17)
  • [45] THE NONLINEAR DYNAMICS OF A LINEAR CLASSICAL OSCILLATOR COUPLED TO A MACROSCOPIC QUANTUM OBJECT
    RALPH, JF
    SPILLER, TP
    CLARK, TD
    PRANCE, RJ
    PRANCE, H
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (19): : 2637 - 2651
  • [46] Fast quantum communication in linear networks
    Jacobs, Kurt
    Wu, Rebing
    Wang, Xiaoting
    Ashhab, Sahel
    Chen, Qi-Ming
    Rabitz, Herschel
    [J]. EPL, 2016, 114 (04)
  • [47] Local Realism of Macroscopic Correlations
    Ramanathan, R.
    Paterek, T.
    Kay, A.
    Kurzynski, P.
    Kaszlikowski, D.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (06)
  • [48] Macroscopic limit of nonclassical correlations
    Kurzynski, Pawel
    Kaszlikowski, Dagomir
    [J]. PHYSICAL REVIEW A, 2016, 93 (02)
  • [49] Dynamic correlations of macroscopic quantities
    Pierre-Louis, Olivier
    [J]. PHYSICAL REVIEW E, 2007, 76 (06):
  • [50] Macroscopic lateral correlations of the giant optical fluctuations under the quantum Hall effect conditions
    Parakhonsky, A. L.
    Lebedev, M. V.
    Dremin, A. A.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (08): : 1449 - 1452