Pharmacogenetic studies identify the genetic factors that influence the intersubject variation in drug response. This article proposes a general framework to determine sample size in pharmacogenetic studies. Simple closed form solutions for the sample size are derived for continuous and binary outcomes. To extend the application to pharmacogenomic studies, where a large number of gene-treatment interactions are evaluated simultaneously, we advocate the use of false discovery rate (FDR) in controlling false positive proportion. We adapt the method proposed by Shao and Tseng (2007) to facilitate adjustment for correlation among multiple tests for better control of false positives and power. A real example is given and simulation studies are carried out to demonstrate the performance of the proposed method.
机构:
Univ Amsterdam, Fac Social & Behav Sci, Dept Psychol, Amsterdam, NetherlandsUniv Amsterdam, Fac Social & Behav Sci, Dept Psychol, Amsterdam, Netherlands
Visser, Ingmar
Kucharsky, Simon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Amsterdam, Fac Social & Behav Sci, Dept Psychol, Amsterdam, NetherlandsUniv Amsterdam, Fac Social & Behav Sci, Dept Psychol, Amsterdam, Netherlands
Kucharsky, Simon
Levelt, Claartje
论文数: 0引用数: 0
h-index: 0
机构:
Leiden Univ, Fac Humanities, Ctr Linguist, Leiden, NetherlandsUniv Amsterdam, Fac Social & Behav Sci, Dept Psychol, Amsterdam, Netherlands
Levelt, Claartje
Stefan, Angelika M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Amsterdam, Fac Social & Behav Sci, Dept Psychol, Amsterdam, NetherlandsUniv Amsterdam, Fac Social & Behav Sci, Dept Psychol, Amsterdam, Netherlands
Stefan, Angelika M.
论文数: 引用数:
h-index:
机构:
Wagenmakers, Eric-Jan
Oakes, Lisa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Psychol, Davis, CA USA
Univ Calif Davis, Ctr Mind & Brain, Davis, CA USAUniv Amsterdam, Fac Social & Behav Sci, Dept Psychol, Amsterdam, Netherlands