On control and synchronization in chaotic and hyperchaotic systems via linear feedback control

被引:208
|
作者
Rafikov, Marat [2 ]
Balthazar, Jose Manoel [1 ]
机构
[1] Univ Estadual Paulista, BR-13500230 Rio Claro, SP, Brazil
[2] Univ Reg Noroeste Estado Rio Grande do Sul, BR-98700000 Ijui, RS, Brazil
基金
巴西圣保罗研究基金会;
关键词
chaos control; synchronization; linear feedback control; chaotic and hyperchaotic rossler systems;
D O I
10.1016/j.cnsns.2006.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1246 / 1255
页数:10
相关论文
共 50 条
  • [31] Functional projective synchronization of chaotic systems via nonlinear feedback control
    Park, Ju H.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (10) : 1301 - 1305
  • [32] H∞ Synchronization of Switched Chaotic Systems via Output Feedback Control
    Wan, Zhang-Lin
    Yan, Jun-Juh
    Hou, Yi-You
    Liao, Teh-Lu
    [J]. 2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009), 2009, : 49 - +
  • [33] Adaptive synchronization of chaotic systems via state or output feedback control
    Hong, YG
    Qin, HS
    Chen, GR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (04): : 1149 - 1158
  • [34] Anti-synchronization of Lienard chaotic systems via feedback control
    Xiao Jian
    [J]. INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2010, 5 (18): : 2757 - 2761
  • [35] Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control
    Chen, Heng-Hui
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 466 - 473
  • [36] Lag Synchronization of Hyperchaotic Systems via Intermittent Control
    Huang, Junjian
    Li, Chuandong
    Zhang, Wei
    Wei, Pengcheng
    Han, Qi
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [37] Synchronization of two hyperchaotic systems via adaptive control
    Wu, Xianyong
    Zhang, Hongmin
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2268 - 2273
  • [38] Synchronization of Chaotic Fractional-Order WINDMI Systems via Linear State Error Feedback Control
    Xin, Baogui
    Chen, Tong
    Liu, Yanqin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [39] SYNCHRONIZATION OF CHAOTIC FRACTIONAL-ORDER SYSTEMS VIA LINEAR CONTROL
    Odibat, Zaid M.
    Corson, Nathalie
    Aziz-Alaoui, M. A.
    Bertelle, Cyrille
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 81 - 97
  • [40] Stochastic linear generalized synchronization of chaotic systems via robust control
    Hu, Aihua
    Xu, Zhenyuan
    [J]. PHYSICS LETTERS A, 2008, 372 (21) : 3814 - 3818