Regularized trace of a two-dimensional harmonic oscillator

被引:9
|
作者
Fazullin, ZY [1 ]
Murtazin, KK [1 ]
机构
[1] Bashkir State Univ, Ufa 450074, Russia
关键词
D O I
10.1070/SM2001v192n05ABEH000566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spectrum of a perturbation with compact support of a two-dimensional harmonic oscillator is investigated and the classical formula for the first regularized trace is obtained.
引用
收藏
页码:725 / 761
页数:37
相关论文
共 50 条
  • [41] Representation of Quantum States of Two-Dimensional simple Harmonic oscillator by convolution Neural Network
    He Jiqiang
    Ma Jianping
    Peng Xin
    Liu Yantao
    Wang Wenxia
    Wang Ying
    Zhang Dawei
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2019,
  • [42] Dirac's Method for the Two-Dimensional Damped Harmonic Oscillator in the Extended Phase Space
    Gouba, Laure
    [J]. MATHEMATICS, 2018, 6 (10)
  • [43] CLASSICAL AND QUANTUM DESCRIPTION OF THE TWO-DIMENSIONAL SIMPLE HARMONIC-OSCILLATOR IN ELLIPTIC COORDINATES
    FENDRIK, AJ
    BERNATH, M
    [J]. PHYSICAL REVIEW A, 1989, 40 (08): : 4215 - 4223
  • [44] Regularized trace of the perturbed Laplace-Beltrami operator on two-dimensional manifolds with closed geodesics
    Zykova, T. V.
    [J]. MATHEMATICAL NOTES, 2013, 93 (3-4) : 397 - 411
  • [45] A SIMPLE DERIVATION OF THE CONSERVED SYMMETRIC TENSOR FOR THE TWO-DIMENSIONAL ISOTROPIC HARMONIC-OSCILLATOR
    YOSHIDA, T
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1987, 100 (03): : 425 - 429
  • [46] Quantization of a nonlinear oscillator as a model of the harmonic oscillator on spaces of constant curvature: One- and two-dimensional systems
    J. F. Cariñena
    M. F. Rañada
    M. Santander
    [J]. Physics of Atomic Nuclei, 2008, 71 : 836 - 843
  • [47] Quantization of a nonlinear oscillator as a model of the harmonic oscillator on spaces of constant curvature:: One- and two-dimensional systems
    Carinena, J. F.
    Ranada, M. F.
    Santander, M.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 836 - 843
  • [48] The regularized dia closure for two-dimensional turbulence
    Frederiksen, JS
    Davies, AG
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2004, 98 (03): : 203 - 223
  • [49] Quasimodes of the two-dimensional quartic oscillator
    V. V. Belov
    V. A. Maximov
    [J]. Mathematical Notes, 1998, 64 : 251 - 256
  • [50] Quasimodes of the two-dimensional quartic oscillator
    Belov, VV
    Maximov, VA
    [J]. MATHEMATICAL NOTES, 1998, 64 (1-2) : 251 - 256