Regularized trace of a two-dimensional harmonic oscillator

被引:9
|
作者
Fazullin, ZY [1 ]
Murtazin, KK [1 ]
机构
[1] Bashkir State Univ, Ufa 450074, Russia
关键词
D O I
10.1070/SM2001v192n05ABEH000566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spectrum of a perturbation with compact support of a two-dimensional harmonic oscillator is investigated and the classical formula for the first regularized trace is obtained.
引用
收藏
页码:725 / 761
页数:37
相关论文
共 50 条
  • [1] The relativistic two-dimensional harmonic oscillator
    Nagiyev, S. M.
    Jafarov, E. I.
    Efendiyev, M. Y.
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2009, 124 (04): : 395 - 403
  • [2] Harmonic oscillator in noncommuting two-dimensional space
    Streklas, Antony
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (32): : 5363 - 5380
  • [3] The classical formula for the regularized trace of a multidimensional harmonic oscillator
    Fazullin Z.Yu.
    Murtazin Kh.Kh.
    [J]. Journal of Mathematical Sciences, 2002, 108 (4) : 608 - 633
  • [4] THE REGULARIZED TRACE OF A 2-DIMENSIONAL OSCILLATOR
    LYUBISHKIN, VA
    [J]. MATHEMATICAL NOTES, 1993, 53 (3-4) : 354 - 356
  • [5] On spectrum of perturbed two-dimensional harmonic oscillator in a strip
    Fazullin, Ziganur
    Nugaeva, Irina
    [J]. INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [6] The generic spacing distribution of the two-dimensional harmonic oscillator
    Greenman, CD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14): : 4065 - 4081
  • [7] WIGNERS FUNCTION OF THE TWO-DIMENSIONAL HARMONIC-OSCILLATOR
    GORSHENKOV, VN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1989, 32 (07): : 105 - 106
  • [8] Modeling a two-dimensional distorted stochastic harmonic oscillator
    Gontchar, Igor I.
    Chushnyakova, Maria V.
    Volkova, Vera K.
    Blesman, Alexander I.
    [J]. 2017 XI INTERNATIONAL IEEE SCIENTIFIC AND TECHNICAL CONFERENCE DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES (DYNAMICS), 2017,
  • [9] Representation of the Green function of a two-dimensional harmonic oscillator
    Fazullin, Z. Yu
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 107 (03): : 3 - 9
  • [10] ASYMPTOTIC PRESENTATION OF EIGENFUNCTIONS OF A TWO-DIMENSIONAL HARMONIC OSCILLATOR
    Akhmerova, E. F.
    [J]. UFA MATHEMATICAL JOURNAL, 2011, 3 (04): : 13 - 19