Ranking queries on uncertain data

被引:14
|
作者
Hua, Ming [1 ]
Pei, Jian [2 ]
Lin, Xuemin [3 ,4 ]
机构
[1] Facebook Inc, Cambridge, MA USA
[2] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada
[3] Univ New S Wales, Sydney, NSW, Australia
[4] NICTA, Sydney, NSW, Australia
来源
VLDB JOURNAL | 2011年 / 20卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Uncertain data; Probabilistic ranking queries; Query processing;
D O I
10.1007/s00778-010-0196-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Uncertain data is inherent in a few important applications. It is far from trivial to extend ranking queries (also known as top-k queries), a popular type of queries on certain data, to uncertain data. In this paper, we cast ranking queries on uncertain data using three parameters: rank threshold k, probability threshold p, and answer set size threshold l. Systematically, we identify four types of ranking queries on uncertain data. First, a probability threshold top-k query computes the uncertain records taking a probability of at least p to be in the top-k list. Second, a top-(k, l) query returns the top-l uncertain records whose probabilities of being ranked among top-k are the largest. Third, the p-rank of an uncertain record is the smallest number k such that the record takes a probability of at least p to be ranked in the top-k list. A rank threshold top-k query retrieves the records whose p-ranks are at most k. Last, a top-(p, l) query returns the top-l uncertain records with the smallest p-ranks. To answer such ranking queries, we present an efficient exact algorithm, a fast sampling algorithm, and a Poisson approximation-based algorithm. To answer top-(k, l) queries and top-(p, l) queries, we propose PRist+, a compact index. An efficient index construction algorithm and efficacious query answering methods are developed for PRist+. An empirical study using real and synthetic data sets verifies the effectiveness of the probabilistic ranking queries and the efficiency of our methods.
引用
收藏
页码:129 / 153
页数:25
相关论文
共 50 条
  • [41] SPHLU:An Efficient Algorithm for Processing PRkNN Queries on Uncertain Data
    WANG Shengsheng
    LI Yang
    CHAI Sheng
    BOLOU Bolou Dickson
    [J]. Chinese Journal of Electronics, 2016, 25 (03) : 403 - 406
  • [42] Indexing metric uncertain data for range queries and range joins
    Lu Chen
    Yunjun Gao
    Aoxiao Zhong
    Christian S. Jensen
    Gang Chen
    Baihua Zheng
    [J]. The VLDB Journal, 2017, 26 : 585 - 610
  • [43] Probabilistic CkNN Queries of Uncertain Data in Large Road Networks
    Li, Yanhong
    Zhu, Rongbo
    Li, Guohui
    Shu, Lihchyun
    Luo, Changyin
    [J]. IEEE ACCESS, 2016, 4 : 8900 - 8913
  • [44] Adaptive Processing for Distributed Skyline Queries over Uncertain Data
    Zhou, Xu
    Li, Kenli
    Zhou, Yantao
    Li, Keqin
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (02) : 371 - 384
  • [45] Indexing metric uncertain data for range queries and range joins
    Chen, Lu
    Gao, Yunjun
    Zhong, Aoxiao
    Jensen, Christian S.
    Chen, Gang
    Zheng, Baihua
    [J]. VLDB JOURNAL, 2017, 26 (04): : 585 - 610
  • [46] Optimizing Distributed Top-k Queries on Uncertain Data
    Zhao Zhibin
    Yu Yang
    Bao Yubin
    Yu Ge
    [J]. 2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 3209 - 3214
  • [47] Dynamic structures for top-k queries on uncertain data
    Chen, Jiang
    Yi, Ke
    [J]. ALGORITHMS AND COMPUTATION, 2007, 4835 : 427 - +
  • [48] SPHLU: An Efficient Algorithm for Processing PRkNN Queries on Uncertain Data
    Wang Shengsheng
    Li Yang
    Chai Sheng
    Bolou, Bolou Dickson
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2016, 25 (03) : 403 - 406
  • [49] Probabilistic nearest neighbor queries of uncertain data via wireless data broadcast
    Zhu Fangzhou
    Li Guohui
    Li Li
    Zhao Xiaosong
    Zhang Cong
    [J]. PEER-TO-PEER NETWORKING AND APPLICATIONS, 2013, 6 (04) : 363 - 379
  • [50] Probabilistic nearest neighbor queries of uncertain data via wireless data broadcast
    Zhu Fangzhou
    Li Guohui
    Li Li
    Zhao Xiaosong
    Zhang Cong
    [J]. Peer-to-Peer Networking and Applications, 2013, 6 : 363 - 379