Generalization Properties of Machine Learning-based Raman Models

被引:0
|
作者
de Moura, U. C. [1 ]
Zibar, D. [1 ]
Brusin, A. M. Rosa [2 ]
Carena, A. [2 ]
Da Ros, F. [1 ]
机构
[1] Tech Univ Denmark, DTU Foton, DK-2800 Lyngby, Denmark
[2] Politecn Torino, DET, Corso Duca Abruzzi 24, I-10129 Turin, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
NETWORKS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate the generalization capabilities of neural network-based Raman amplifier models. The new proposed model architecture, including fiber parameters as inputs, can predict Raman gains of fiber types unseen during training, unlike previous fiber-specific models. (C) 2021 The Author(s)
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Recent Advances in Machine Learning-Based Models for Prediction of Antiviral Peptides
    Farman Ali
    Harish Kumar
    Wajdi Alghamdi
    Faris A. Kateb
    Fawaz Khaled Alarfaj
    [J]. Archives of Computational Methods in Engineering, 2023, 30 : 4033 - 4044
  • [32] Machine Learning-Based Prediction Models for Control Traffic in SDN Systems
    Yoo, Yeonho
    Yang, Gyeongsik
    Shin, Changyong
    Lee, Junseok
    Yoo, Chuck
    [J]. IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (06) : 4389 - 4403
  • [33] A Machine Learning-based Framework for Building Application Failure Prediction Models
    Pellegrini, Alessandro
    Di Sanzo, Pierangelo
    Avresky, Dimiter R.
    [J]. 2015 IEEE 29TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, 2015, : 1072 - 1081
  • [34] Exploration and Evaluation of Machine Learning-Based Models for Predicting Enzymatic Reactions
    Watanabe, Naoki
    Murata, Masahiro
    Ogawa, Teppei
    Vavricka, Christopher J.
    Kondo, Akihiko
    Ogino, Chiaki
    Araki, Michihiro
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (03) : 1833 - 1843
  • [35] Machine learning-based models for the prediction of breast cancer recurrence risk
    Duo Zuo
    Lexin Yang
    Yu Jin
    Huan Qi
    Yahui Liu
    Li Ren
    [J]. BMC Medical Informatics and Decision Making, 23
  • [36] Review of machine learning-based surrogate models of groundwater contaminant modeling
    Luo, Jiannan
    Ma, Xi
    Ji, Yefei
    Li, Xueli
    Song, Zhuo
    Lu, Wenxi
    [J]. ENVIRONMENTAL RESEARCH, 2023, 238
  • [37] Evaluation of deep machine learning-based models of soil cumulative infiltration
    Alireza Sepahvand
    Ali Golkarian
    Lawal Billa
    Kaiwen Wang
    Fatemeh Rezaie
    Somayeh Panahi
    Saeed Samadianfard
    Khabat Khosravi
    [J]. Earth Science Informatics, 2022, 15 : 1861 - 1877
  • [38] Evaluation of deep machine learning-based models of soil cumulative infiltration
    Sepahvand, Alireza
    Golkarian, Ali
    Billa, Lawal
    Wang, Kaiwen
    Rezaie, Fatemeh
    Panahi, Somayeh
    Samadianfard, Saeed
    Khosravi, Khabat
    [J]. EARTH SCIENCE INFORMATICS, 2022, 15 (03) : 1861 - 1877
  • [39] Uniformly accurate machine learning-based hydrodynamic models for kinetic equations
    Han, Jiequn
    Ma, Chao
    Ma, Zheng
    E, Weinan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (44) : 21983 - 21991
  • [40] Survey on Machine Learning-based QoE-QoS Correlation Models
    Aroussi, Sana
    Mellouk, Abdelhamid
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTING, MANAGEMENT AND TELECOMMUNICATIONS (COMMANTEL), 2014, : 200 - 204