Generalization Properties of Machine Learning-based Raman Models

被引:0
|
作者
de Moura, U. C. [1 ]
Zibar, D. [1 ]
Brusin, A. M. Rosa [2 ]
Carena, A. [2 ]
Da Ros, F. [1 ]
机构
[1] Tech Univ Denmark, DTU Foton, DK-2800 Lyngby, Denmark
[2] Politecn Torino, DET, Corso Duca Abruzzi 24, I-10129 Turin, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
NETWORKS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate the generalization capabilities of neural network-based Raman amplifier models. The new proposed model architecture, including fiber parameters as inputs, can predict Raman gains of fiber types unseen during training, unlike previous fiber-specific models. (C) 2021 The Author(s)
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Fiber-Agnostic Machine Learning-Based Raman Amplifier Models
    de Moura, Uiara C.
    Zibar, Darko
    Brusin, A. Margareth Rosa
    Carena, Andrea
    Da Ros, Francesco
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (01) : 83 - 95
  • [2] Machine learning-based Raman amplifier design
    Zibar, D.
    Ferrari, A.
    Curri, V.
    Carena, A.
    [J]. 2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [3] Machine learning-based prediction models in neurosurgery
    Habashy, Karl J.
    Arrieta, Victor A.
    Feghali, James
    [J]. NEUROSURGICAL FOCUS, 2023, 55 (03)
  • [4] Modular machine learning-based elastoplasticity: Generalization in the context of limited data
    Fuhg, Jan Niklas
    Hamel, Craig M.
    Johnson, Kyle
    Jones, Reese
    Bouklas, Nikolaos
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 407
  • [5] Algorithmic bias in machine learning-based marketing models
    Akter, Shahriar
    Dwivedi, Yogesh K.
    Sajib, Shahriar
    Biswas, Kumar
    Bandara, Ruwan J.
    Michael, Katina
    [J]. JOURNAL OF BUSINESS RESEARCH, 2022, 144 : 201 - 216
  • [6] Machine learning-based prediction models for postpartum hemorrhage
    Venkatesh, Kartik K.
    Strauss, Robert
    Grotegut, Chad
    Heine, Phillips
    Stamilio, David M.
    Menard, Kathryn
    Jelovsek, Eric
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S175 - S176
  • [7] Developing Machine Learning-Based Models for Railway Inspection
    Yang, Chunsheng
    Sun, Yanmin
    Ladubec, Chris
    Liu, Yan
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 15
  • [8] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [9] COMBINATION OF MACHINE LEARNING-BASED AUTOMATIC VALUATION MODELS FOR RESIDENTIAL PROPERTIES IN SOUTH KOREA
    Hong, Jengei
    Kim, Woo-sung
    [J]. INTERNATIONAL JOURNAL OF STRATEGIC PROPERTY MANAGEMENT, 2022, 26 (05) : 362 - 384
  • [10] Credit scoring using machine learning and deep Learning-Based models
    Mestiri, Sami
    [J]. DATA SCIENCE IN FINANCE AND ECONOMICS, 2024, 4 (02): : 236 - 248