Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron

被引:98
|
作者
Moon, Jihoon [1 ]
Kim, Yongsung [2 ]
Son, Minjae [1 ]
Hwang, Eenjun [1 ]
机构
[1] Korea Univ, Sch Elect Engn, 145 Anam Ro, Seoul 02841, South Korea
[2] SPRi, 22,Daewangpangyo Ro 712 Beon Gil, Seongnam Si 13488, Gyeonggi Do, South Korea
关键词
hybrid forecast model; electrical load forecasting; time series analysis; random forest; multilayer perceptron; FUZZY TIME-SERIES; ENERGY-CONSUMPTION; FEATURE-SELECTION; PREDICTION; BUILDINGS; MODELS; ANN;
D O I
10.3390/en11123283
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A stable power supply is very important in the management of power infrastructure. One of the critical tasks in accomplishing this is to predict power consumption accurately, which usually requires considering diverse factors, including environmental, social, and spatial-temporal factors. Depending on the prediction scope, building type can also be an important factor since the same types of buildings show similar power consumption patterns. A university campus usually consists of several building types, including a laboratory, administrative office, lecture room, and dormitory. Depending on the temporal and external conditions, they tend to show a wide variation in the electrical load pattern. This paper proposes a hybrid short-term load forecast model for an educational building complex by using random forest and multilayer perceptron. To construct this model, we collect electrical load data of six years from a university campus and split them into training, validation, and test sets. For the training set, we classify the data using a decision tree with input parameters including date, day of the week, holiday, and academic year. In addition, we consider various configurations for random forest and multilayer perceptron and evaluate their prediction performance using the validation set to determine the optimal configuration. Then, we construct a hybrid short-term load forecast model by combining the two models and predict the daily electrical load for the test set. Through various experiments, we show that our hybrid forecast model performs better than other popular single forecast models.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Multi-Model Fusion Short-Term Load Forecasting Based on Random Forest Feature Selection and Hybrid Neural Network
    Xuan, Yi
    Si, Weiguo
    Zhu, Jiong
    Sun, Zhiqing
    Zhao, Jian
    Xu, Mingjie
    Xu, Shouliang
    IEEE ACCESS, 2021, 9 : 69002 - 69009
  • [32] Generating fuzzy model for short-term load forecasting using hybrid algorithm
    Zhejiang University, Hangzhou 310027, China
    Dianli Xitong Zidonghue, 2006, 2 (32-40+95):
  • [33] SHORT-TERM LOAD FORECASTING
    GROSS, G
    GALIANA, FD
    PROCEEDINGS OF THE IEEE, 1987, 75 (12) : 1558 - 1573
  • [34] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [35] A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest
    Huang, Nantian
    Lu, Guobo
    Xu, Dianguo
    ENERGIES, 2016, 9 (10)
  • [36] Short-Term Rainfall Forecasting Using Multi-Layer Perceptron
    Zhang, Pengcheng
    Jia, Yangyang
    Gao, Jerry
    Song, Wei
    Leung, Hareton
    IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (01) : 93 - 106
  • [37] A New Hybrid Model for Short-Term Electricity Load Forecasting
    Haq, Md Rashedul
    Ni, Zhen
    IEEE ACCESS, 2019, 7 : 125413 - 125423
  • [38] Fast and Accurate Short-Term Load Forecasting with a Hybrid Model
    Shin, Sang Mun
    Rasheed, Asad
    Kil-Heum, Park
    Veluvolu, Kalyana C.
    ELECTRONICS, 2024, 13 (06)
  • [39] The new hybrid approaches to forecasting short-term electricity load
    Fan, Guo-Feng
    Liu, Yan-Rong
    Wei, Hui-Zhen
    Yu, Meng
    Li, Yin-He
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 213
  • [40] An Accurate Hybrid Approach for Electric Short-Term Load Forecasting
    Sina, Alireza
    Kaur, Damanjeet
    IETE JOURNAL OF RESEARCH, 2023, 69 (05) : 2727 - 2742