Why current flows: A multiparticle one-dimensional model

被引:3
|
作者
Malyshev, V. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
electric current; multiparticle system; solid state physics; classical dynamics;
D O I
10.1007/s11232-008-0065-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In all known microscopic models of electric current including the basic Drude model, charged particles are accelerated by an external force and some random environment retards them. We introduce a classical multiparticle deterministic one-dimensional model on an interval with nearest-neighbor interaction, explaining how current can flow if the external force acts only on the ends of the passive part (i.e., outside the generator, battery, etc.) of the conductor. We obtain a family of explicit solutions.
引用
收藏
页码:766 / 774
页数:9
相关论文
共 50 条
  • [1] Why current flows: A multiparticle one-dimensional model
    V. A. Malyshev
    Theoretical and Mathematical Physics, 2008, 155 : 766 - 774
  • [2] A ONE-DIMENSIONAL INTEGRABLE MODEL OF FERMIONS WITH MULTIPARTICLE HOPPING
    BARIEV, RZ
    KLUMPER, A
    SCHADSCHNEIDER, A
    ZITTARTZ, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (09): : 2437 - 2444
  • [3] One-Dimensional Coulomb Multiparticle Systems
    Malyshev, V. A.
    Zamyatin, A. A.
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [4] The span of one-dimensional multiparticle Brownian motion
    Sastry, GM
    Agmon, N
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (08): : 3022 - 3025
  • [5] Span of one-dimensional multiparticle Brownian motion
    Madhavi, Sastry, G.
    Agmon, Noam
    Journal of Chemical Physics, 1996, 104 (08):
  • [6] INTERMITTENCY IN MULTIPARTICLE DISTRIBUTIONS AND ONE-DIMENSIONAL ISING SYSTEMS
    DEDEUS, JD
    SEIXAS, JC
    PHYSICS LETTERS B, 1990, 246 (3-4) : 506 - 512
  • [7] ONE-DIMENSIONAL FLOWS IN ELECTROHYDRODYNAMICS
    GOGOSOV, VV
    POLIANSK.VA
    SEMENOVA, IP
    IAKUBENK.AE
    JOURNAL OF APPLIED MATHEMATICS AND MECHANICS-USSR, 1969, 33 (02): : 218 - &
  • [8] Thermodynamics of One-Dimensional Flows
    A. Duyunova
    V. Lychagin
    S. Tychkov
    Lobachevskii Journal of Mathematics, 2023, 44 : 3914 - 3918
  • [9] ONE-DIMENSIONAL ANISENTROPIC FLOWS
    LUDFORD, GSS
    MARTIN, MH
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1954, 7 (01) : 45 - 63
  • [10] FLOWS ON ONE-DIMENSIONAL SPACES
    AARTS, JM
    MARTENS, M
    FUNDAMENTA MATHEMATICAE, 1988, 131 (01) : 53 - 67