Laser Flash Photolysis of Au-PNIPAM Core-Shell Nanoparticles: Dynamics of the Shell Response

被引:33
|
作者
Murphy, Sean [1 ,2 ]
Jaber, Sarah [1 ,2 ]
Ritchie, Cameron [1 ,2 ]
Karg, Matthias [3 ]
Mulvaney, Paul [1 ,2 ]
机构
[1] Univ Melbourne, Sch Chem, 30 Flemington Rd, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Inst Bio21, 30 Flemington Rd, Parkville, Vic 3010, Australia
[3] Heinrich Heine Univ Dusseldorf, Phys Chem 1, D-40204 Dusseldorf, Germany
关键词
GOLD NANOPARTICLES; AQUEOUS-SOLUTION; N-ISOPROPYLACRYLAMIDE; PLASMONIC NANOBUBBLES; COHERENT EXCITATION; RELAXATION DYNAMICS; VIBRATIONAL-MODES; PHASE-TRANSITION; METAL PARTICLES; COLLOIDAL GOLD;
D O I
10.1021/acs.langmuir.6b02781
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrophobic forces play a key role in the processes of collapse and reswelling of thermoresponsive polymers. However, little is known about the dynamics of these processes. Here, thermoresponsive poly(N-isopropylacrylamide)-encapsulated gold nanoparticles (Au-PNIPAM) are heated-via nanosecond laser flash photolysis. Photothermal heating via excitation of the localized surface plasmon resonance of the Au nanoparticle cores results in rapid PNIPAM shell collapse within the 10 ns pulse width of the laser. Remarkably, reswelling of the polymer shell takes place in less than 100 ns. A clear pump fluence threshold for the collapse of the PNIPAM shell is demonstrated, below which collapse is not observed. Reswelling takes longer at higher laser intensities.
引用
收藏
页码:12497 / 12503
页数:7
相关论文
共 50 条
  • [31] Molecular dynamics simulation of the melting behavior of Pt-Au nanoparticles with core-shell structure
    Yang, Zhen
    Yang, Xiaoning
    Xu, Zhijun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (13): : 4937 - 4947
  • [32] Simulation for Alloying Behavior of Core-Shell Structured Ag-Au Nanoparticles with Molecular Dynamics
    Dang Min
    Xiao Shifang
    Deng Huiqiu
    Deng Lei
    Hu Wangyu
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2013, 42 (11) : 2321 - 2325
  • [33] Thermo-responsive monodisperse core-shell microspheres with PNIPAM core and biocompatible porous ethyl cellulose shell embedded with PNIPAM gates
    Yu, Ya-Lan
    Zhang, Mao-Jie
    Xie, Rui
    Ju, Xiao-Jie
    Wang, Ji-Yun
    Pi, Shuo-Wei
    Chu, Liang-Yin
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 376 : 97 - 106
  • [34] Synthesis of core-shell nanoparticles with a Pt nanoparticle core and a silica shell
    Oh, Jong-Gil
    Kim, Hansung
    [J]. CURRENT APPLIED PHYSICS, 2013, 13 (01) : 130 - 136
  • [35] SiO2/Au core-shell nanoparticles: synthesis and characterization
    Matveevskaya, N. A.
    Tolmachev, A. V.
    Pazura, Yu. I.
    Savvin, Yu. N.
    Dukarov, S. V.
    Semynozhenko, V. P.
    [J]. FUNCTIONAL MATERIALS, 2005, 12 (02): : 244 - 250
  • [36] Scaling of optical forces on Au-PEG core-shell nanoparticles
    Spadaro, Donatella
    Iati, Maria A.
    Donato, Maria G.
    Gucciardi, Pietro G.
    Saija, Rosalba
    Cherlakola, Anurag R.
    Scaramuzza, Stefano
    Amendola, Vincenzo
    Marago, Onofrio M.
    [J]. RSC ADVANCES, 2015, 5 (113): : 93139 - 93146
  • [37] Enhanced photocatalytic activities of core-shell Au-titanate nanoparticles
    Hayakawa, Tomokatsu
    Hori, Mamiko
    Pagnoux, C.
    Baumard, J. F.
    Nogami, Masayuki
    [J]. CHEMISTRY LETTERS, 2007, 36 (01) : 128 - 129
  • [38] Au/Pd core-shell nanoparticles for enhanced electrocatalytic activity and durability
    Hsu, Chiajen
    Huang, Chienwen
    Hao, Yaowu
    Liu, Fuqiang
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2012, 23 : 133 - 136
  • [39] ASAXS study on the formation of core-shell Ag/Au nanoparticles in glass
    Haug, J.
    Kruth, H.
    Dubiel, M.
    Hofmeister, H.
    Haas, S.
    Tatchev, D.
    Hoell, A.
    [J]. NANOTECHNOLOGY, 2009, 20 (50)
  • [40] HAADF study of Au-Pt core-shell bimetallic nanoparticles
    D. Garcia-Gutierrez
    C. Gutierrez-Wing
    M. Miki-Yoshida
    M. Jose-Yacaman
    [J]. Applied Physics A, 2004, 79 : 481 - 487