Strength of Dry and Wet Quartz in the Low-Temperature Plasticity Regime: Insights From Nanoindentation

被引:5
|
作者
Ceccato, Alberto [1 ]
Menegon, Luca [2 ]
Hansen, Lars N. [3 ,4 ]
机构
[1] Univ Bologna, Dipartimento Sci Biol Geol & Ambientali BiGeA, Alma Mater Studiorum, Bologna, Italy
[2] Univ Oslo, Dept Geosci, Njord Ctr, Oslo, Norway
[3] Univ Oxford, Dept Earth Sci, Oxford, England
[4] Univ Minnesota, Dept Earth & Environm Sci, Minneapolis, MN USA
关键词
nanoindentation; low-temperature plasticity; quartz; dislocation glide; hydrolytic weakening; DEFORMATION; WATER; INDENTATION; MECHANICS; PRESSURE; RHEOLOGY; FRACTURE; HARDNESS; OLIVINE; RECORD;
D O I
10.1029/2021GL094633
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
At low-temperature and high-stress conditions, quartz deformation is controlled by the kinetics of dislocation glide, that is, low-temperature plasticity (LTP). To investigate the relationship between intracrystalline H2O content and the yield strength of quartz LTP, we have integrated spherical and Berkovich nanoindentation tests at room temperature on natural quartz with electron backscatter diffraction and secondary-ion mass spectrometry measurements of intracrystalline H2O content. Dry (<20 wt ppm H2O) and wet (20-100 wt ppm H2O) crystals exhibit comparable indentation hardness. Quartz yield strength, which is proportional to indentation hardness, seems to be unaffected by the intracrystalline H2O content when deformed under room temperature, high-stress conditions. Pre-indentation intracrystalline microstructure may have provided a high density of dislocation sources, influencing the first increments of low-temperature plastic strains. Our results have implications for fault strength at the frictional-viscous transition and during transient deformation by LTP, such as seismogenic loading and post-seismic creep.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Low-temperature plasticity of pure parahydrogen
    Alekseeva, L. A.
    Kazakov, D. N.
    [J]. PHYSICS OF THE SOLID STATE, 2007, 49 (11) : 2104 - 2108
  • [22] Low-temperature plasticity of pure parahydrogen
    L. A. Alekseeva
    D. N. Kazakov
    [J]. Physics of the Solid State, 2007, 49 : 2104 - 2108
  • [23] PLASTICITY OF METALS AT VERY LOW-TEMPERATURE
    KROUPA, F
    [J]. CESKOSLOVENSKY CASOPIS PRO FYSIKU SEKCE A, 1976, 26 (05): : 525 - 527
  • [24] LOW-TEMPERATURE PLASTICITY OF CRYSTALLINE METHANE
    LEONTYEVA, AV
    ROMANUSHA, VA
    PROKHOROV, AY
    STEPANCHUK, LV
    [J]. FIZIKA TVERDOGO TELA, 1988, 30 (05): : 1503 - 1505
  • [25] Low-temperature plastic rheology of olivine determined by nanoindentation
    Kranjc, Kelly
    Rouse, Zachary
    Flores, Katharine M.
    Skemer, Philip
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (01) : 176 - 184
  • [26] LOW-TEMPERATURE DRY ETCHING FOR ULSI
    TACHI, S
    [J]. DENKI KAGAKU, 1989, 57 (04): : 277 - 281
  • [27] LOW-TEMPERATURE THERMO-LUMINESCENCE OF QUARTZ
    KOHNKE, EE
    MALIK, DM
    SIBLEY, WA
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (03): : 235 - 235
  • [28] Low-temperature mechanical properties of fullerites: Structure, elasticity, plasticity, strength (Review Article)
    Lubenets, S.V.
    Fomenko, L.S.
    Natsik, V.D.
    Rusakova, A.V.
    [J]. Fizika Nizkikh Temperatur, 2019, 45 (01): : 3 - 45
  • [29] The investigation of strength and plasticity mechanism of low-temperature annealed ultrafine grained stainless steel
    Pang, Q. H.
    Li, W. J.
    Cai, M. Y.
    Qi, H.
    Zhang, C. C.
    Wu, J. N.
    [J]. 2018 INTERNATIONAL CONFERENCE ON MATERIAL STRENGTH AND APPLIED MECHANICS (MSAM 2018), 2018, 372
  • [30] Modification of quartz in a low-temperature air plasma
    Wang D.
    Xu M.
    Jin W.
    Wang B.
    Yan X.
    [J]. 1600, China Coal Society (42): : 2752 - 2757