Self-similar solutions of chemotactic system

被引:2
|
作者
Yoshida, K [1 ]
机构
[1] Hiroshima Univ, Higashihiroshima, Hiroshima 724, Japan
关键词
self-similar solution; chemotaxis; elliptic equation; global branch;
D O I
10.1016/S0362-546X(01)00225-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By consider self-similar solutions we reduce the system of parabolic equations (1.1) modeling chemotaxis to an elliptic equation with a positive parameter sigma; Delta psi + tau /2y(.)del psi + sigmae(-1/4 \y \2+psi) = 0 in R-2 We investigate a structure of the pair (sigma, psi) of a parameter and a solution.
引用
收藏
页码:813 / 824
页数:12
相关论文
共 50 条
  • [41] Self-similar solutions of the cubic wave equation
    Bizon, P.
    Breitenlohner, P.
    Maison, D.
    Wasserman, A.
    NONLINEARITY, 2010, 23 (02) : 225 - 236
  • [42] Self-similar Solutions for Laminar Wall Jets
    Gaifullin, A. M.
    Shcheglov, A. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (05) : 1963 - 1970
  • [43] On self-similar solutions of the vortex filament equation
    Gamayun, O.
    Lisovyy, O.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
  • [44] On self-similar solutions to the incompressible Euler equations
    Bressan, Alberto
    Murray, Ryan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (06) : 5142 - 5203
  • [45] Self-similar solutions for the diffraction of weak shocks
    Tesdall, Allen M.
    Hunter, John K.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2013, 4 (1-2) : 92 - 100
  • [46] On annular self-similar solutions in resistive magnetogasdynamics
    Lock, R. M.
    Mestel, A. J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2098): : 2535 - 2547
  • [47] Kinematic self-similar plane symmetric solutions
    Sharif, M.
    Aziz, Sehar
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (03) : 605 - 624
  • [48] SELF-SIMILAR GROOVING SOLUTIONS TO THE MULLINS' EQUATION
    Kalantarova, Habiba, V
    Novick-Cohen, Amy
    QUARTERLY OF APPLIED MATHEMATICS, 2021, 79 (01) : 1 - 26
  • [49] Self-similar solutions of Schrödinger flows
    Weiyue Ding
    Hongyan Tang
    Chongchun Zeng
    Calculus of Variations and Partial Differential Equations, 2009, 34