Weighted Total Least Squares with Singular Covariance Matrices Subject to Weighted and Hard Constraints

被引:25
|
作者
Amiri-Simkooei, A. R. [1 ]
机构
[1] Univ Isfahan, Fac Civil Engn & Transportat, Dept Geomat Engn, Esfahan 8174673441, Iran
关键词
Weighted total least squares (WTLS); Errors-in-variables (EIV) model; Linear equality constraints; Two-dimensional (2D) affine transformation; TIKHONOV REGULARIZATION; ESTIMABILITY; ADJUSTMENT; STABILITY; MODEL;
D O I
10.1061/(ASCE)SU.1943-5428.0000239
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Weighted total least squares (WTLS) has been widely used as a standard method to optimally adjust an errors-in-variables (EIV) model containing random errors both in the observation vector and in the coefficient matrix. An earlier work provided a simple and flexible formulation for WTLS based on the standard least-squares (SLS) theory. The formulation allows one to directly apply the available SLS theory to the EIV models. Among such applications, this contribution formulates the WTLS problem subject to weighted or hard linear(ized) equality constraints on unknown parameters. The constraints are to be properly incorporated into the system of equations in an EIV model of which a general structure for the (singular) covariance matrix Q(A) of the coefficient matrix is used. The formulation can easily take into consideration any number of weighted linear and nonlinear constraints. Hard constraints turn out to be a special case of the general formulation of the weighted constraints. Because the formulation is based on the SLS theory, the method automatically approximates the covariance matrix of the estimates from which the precision of the constrained estimates can be obtained. Three numerical examples with different scenarios are used to demonstrate the efficacy of the proposed algorithm for geodetic applications. (C) 2017 American Society of Civil Engineers.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Homotopy nonlinear weighted total least squares adjustment
    Chongyang Zhang
    Chuan Hu
    Feifei Tang
    Yusen Zhou
    Acta Geodaetica et Geophysica, 2024, 59 : 93 - 117
  • [22] Terrestrial analytical photogrammetry with weighted total least squares
    Ma, Youqing
    Liu, Shaochuang
    Wei, Shiyan
    Li, Minglei
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2015, 40 (05): : 594 - 598
  • [23] A modified iterative algorithm for the weighted total least squares
    Younes Naeimi
    Behzad Voosoghi
    Acta Geodaetica et Geophysica, 2020, 55 : 319 - 334
  • [24] Iterative algorithm for weighted total least squares adjustment
    Jazaeri, S.
    Amiri-Simkooei, A. R.
    Sharifi, M. A.
    SURVEY REVIEW, 2014, 46 (334) : 19 - 27
  • [25] On weighted total least-squares for geodetic transformations
    Vahid Mahboub
    Journal of Geodesy, 2012, 86 : 359 - 367
  • [26] Tikhonov regularization for weighted total least squares problems
    Wei, Yimin
    Zhang, Naimin
    Ng, Michael K.
    Xu, Wei
    APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 82 - 87
  • [27] An Efficient Algorithm for Weighted Total Least Squares Method
    Wang J.
    Ni F.
    Zhao J.
    Tongji Daxue Xuebao/Journal of Tongji University, 2021, 49 (05): : 737 - 744
  • [28] On weighted total least-squares for geodetic transformations
    Mahboub, Vahid
    JOURNAL OF GEODESY, 2012, 86 (05) : 359 - 367
  • [29] Enhancement of Computational Efficiency for Weighted Total Least Squares
    Wang, Jianmin
    Yan, Wenshuai
    Zhang, Qiongyue
    Chen, Liming
    JOURNAL OF SURVEYING ENGINEERING, 2021, 147 (04)
  • [30] Homotopy nonlinear weighted total least squares adjustment
    Zhang, Chongyang
    Hu, Chuan
    Tang, Feifei
    Zhou, Yusen
    ACTA GEODAETICA ET GEOPHYSICA, 2024, 59 (01) : 93 - 117