Weighted Total Least Squares with Singular Covariance Matrices Subject to Weighted and Hard Constraints

被引:25
|
作者
Amiri-Simkooei, A. R. [1 ]
机构
[1] Univ Isfahan, Fac Civil Engn & Transportat, Dept Geomat Engn, Esfahan 8174673441, Iran
关键词
Weighted total least squares (WTLS); Errors-in-variables (EIV) model; Linear equality constraints; Two-dimensional (2D) affine transformation; TIKHONOV REGULARIZATION; ESTIMABILITY; ADJUSTMENT; STABILITY; MODEL;
D O I
10.1061/(ASCE)SU.1943-5428.0000239
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Weighted total least squares (WTLS) has been widely used as a standard method to optimally adjust an errors-in-variables (EIV) model containing random errors both in the observation vector and in the coefficient matrix. An earlier work provided a simple and flexible formulation for WTLS based on the standard least-squares (SLS) theory. The formulation allows one to directly apply the available SLS theory to the EIV models. Among such applications, this contribution formulates the WTLS problem subject to weighted or hard linear(ized) equality constraints on unknown parameters. The constraints are to be properly incorporated into the system of equations in an EIV model of which a general structure for the (singular) covariance matrix Q(A) of the coefficient matrix is used. The formulation can easily take into consideration any number of weighted linear and nonlinear constraints. Hard constraints turn out to be a special case of the general formulation of the weighted constraints. Because the formulation is based on the SLS theory, the method automatically approximates the covariance matrix of the estimates from which the precision of the constrained estimates can be obtained. Three numerical examples with different scenarios are used to demonstrate the efficacy of the proposed algorithm for geodetic applications. (C) 2017 American Society of Civil Engineers.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Weighted total least squares algorithm with inequality constraints
    Fang, Xing, 1600, SinoMaps Press (43):
  • [2] On the Covariance Matrix of Weighted Total Least-Squares Estimates
    Amiri-Simkooei, A. R.
    Zangeneh-Nejad, F.
    Asgari, J.
    JOURNAL OF SURVEYING ENGINEERING, 2016, 142 (03)
  • [3] On weighted total least-squares with linear and quadratic constraints
    Mahboub, Vahid
    Sharifi, Mohammad Ali
    JOURNAL OF GEODESY, 2013, 87 (03) : 279 - 286
  • [4] On weighted total least-squares with linear and quadratic constraints
    Vahid Mahboub
    Mohammad Ali Sharifi
    Journal of Geodesy, 2013, 87 : 279 - 286
  • [5] On the Weighted Total Least Squares Solutions
    Fang, X.
    Kutterer, H.
    1ST INTERNATIONAL WORKSHOP ON THE QUALITY OF GEODETIC OBSERVATION AND MONITORING SYSTEMS (QUGOMS'11), 2015, 140 : 45 - 50
  • [6] On weighted structured total least squares
    Markovsky, I
    Van Huffel, S
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 695 - 702
  • [7] An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints
    Xie J.
    Long S.
    Li L.
    Li B.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2018, 43 (10): : 1526 - 1530
  • [8] On non-combinatorial weighted total least squares with inequality constraints
    Xing Fang
    Journal of Geodesy, 2014, 88 : 805 - 816
  • [9] On non-combinatorial weighted total least squares with inequality constraints
    Fang, Xing
    JOURNAL OF GEODESY, 2014, 88 (08) : 805 - 816
  • [10] Erratum to: On weighted total least-squares with linear and quadratic constraints
    Vahid Mahboub
    Mohammad Ali Sharifi
    Journal of Geodesy, 2013, 87 : 607 - 608