An Efficient ZnIn2S4@CuInS2 Core-Shell p-n Heterojunction to Boost Visible-Light Photocatalytic Hydrogen Evolution

被引:127
|
作者
Guo, Xinlei [1 ]
Peng, Yanhua [1 ]
Liu, Guangbo [2 ]
Xie, Guangwen [3 ]
Guo, Yanan [1 ]
Zhang, Yan [1 ]
Yu, Jianqiang [1 ]
机构
[1] Qingdao Univ, Coll Chem & Chem Engn, Qingdao 266071, Shandong, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biofuels, Qingdao 266101, Shandong, Peoples R China
[3] Qingdao Univ Sci & Technol, Key Lab Nanomat, Qingdao 266042, Shandong, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2020年 / 124卷 / 11期
关键词
QUANTUM DOTS; JUNCTION PHOTOCATALYSTS; ZNIN2S4; NANOSHEETS; HETEROSTRUCTURE; FABRICATION; TIO2; PHOTOANODE; CONTACT; ROBUST; ROUTE;
D O I
10.1021/acs.jpcc.9b11623
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The efficient separation of photoexcited electrons and holes is crucial for improving the activity of photocatalytic hydrogen evolution. Herein, an efficient core-shell p-n heterojunction of ZnIn2S4@CuInS2 microflowers has been devised and fabricated by two-step hydrothermal method. The results revealed that the marigold-like microspheres of ZnIn2S4@CuInS2 heterojunction consisted of thin nanosheets, matched well in the lattice, and had a large interface contact area, which boosted charge separation and transfer for solar hydrogen production. Moreover, the intimate interfacial contact between n-type ZnIn2S4 and p-type CuInS2 resulted in the formation of unique p-n heterojunction, which further promoted charge separation due to the built-in electric field. As a consequence, the ZnIn2S4@CuInS2 photocatalyst with 5 atom % CuInS2 showed the highest production of H-2 evolution (about 1168 mu mol.g(-1)) among all prepared photocatalysts, which was nearly 4-fold the amount of the hydrogen production for the pristine ZnIn2S4. Therefore, the core-shell p-n heterojunction is an efficient structure design for the utilization of solar energy to obtain clean energy.
引用
收藏
页码:5934 / 5943
页数:10
相关论文
共 50 条
  • [41] In situ synthesis of core-shell like BiVO4/BiOCl heterojunction with excellent visible-light photocatalytic activity
    Li, Qinghan
    Wang, Ming
    He, Jinyun
    Wang, Yanwu
    OPTICAL MATERIALS, 2023, 144
  • [42] Hierarchical ZnIn2S4: A promising cocatalyst to boost visible-light-driven photocatalytic hydrogen evolution of In(OH)3
    Geng, Mengjie
    Peng, Yanhua
    Zhang, Yan
    Guo, Xinlei
    Yu, Fengkai
    Yang, Xiaolong
    Xie, Guangwen
    Don, Wensheng
    Liu, Chunling
    Li, Jifan
    Yu, Jianqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) : 5787 - 5798
  • [43] BiOCl/BiVO4 p-n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation
    He, Zhiqiao
    Shi, Yuanqiao
    Gao, Chao
    Wen, Lina
    Chen, Jianmeng
    Song, Shuang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (01): : 389 - 398
  • [44] Towards efficient photocatalytic degradation of organic pollutants in hierarchical TiO2/SnO p-n heterojunction under visible-light irradiation
    Zhang, Rui
    Wang, Qi
    Zhang, Jun
    Lu, Qipeng
    Liu, Wenxiu
    Yin, Shu
    Cao, Wenbin
    NANOTECHNOLOGY, 2019, 30 (43)
  • [45] BiOI/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation
    Xiang, Zhenbo
    Wang, Yi
    Zhang, Dun
    Ju, Peng
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 40 : 83 - 92
  • [46] Three-Dimensional Core-Shell Nanorod Arrays for Efficient Visible-Light Photocatalytic H2 Production
    You, Daotong
    Xu, Chunxiang
    Wang, Jing
    Su, Wenyue
    Zhang, Wei
    Zhao, Jie
    Qin, Feifei
    Liu, Yanjun
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (41) : 35184 - 35193
  • [47] Synthesis and photocatalytic properties of core-shell TiO2@ZnIn2S4 photocatalyst
    Yuan, Wen-Hui
    Xia, Zi-Long
    Li, Li
    CHINESE CHEMICAL LETTERS, 2013, 24 (11) : 984 - 986
  • [48] S-Scheme heterojunction based on the in situ coated core-shell NiCo2S4@WS2 photocatalyst was constructed for efficient photocatalytic hydrogen evolution
    Xu, Shengming
    Xu, Jing
    Hu, Linying
    Liu, Ye
    Ma, Lijun
    NEW JOURNAL OF CHEMISTRY, 2021, 46 (01) : 57 - 69
  • [49] ZnIn2S4/AgCoO2 S-scheme heterojunction for photocatalytic hydrogen evolution under visible light irradition in pure water
    Wang, Congcong
    Liu, Boya
    Wang, Guorong
    Jin, Zhiliang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [50] Construction of ZnIn2S4/Bi2MoO6 heterojunction enhancement photocatalytic hydrogen evolution performance under visible light
    Gao, Chenmei
    Xie, Yu
    Chen, Yong
    Ling, Yun
    Ma, Yongcun
    Zhang, Yifan
    Shao, Yi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 90 - 99