Arithmetic properties of polynomials

被引:0
|
作者
Zhang, Yong [1 ]
Shen, Zhongyan [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
[2] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310012, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine system; Integer solution; Parametric solution; Pellian equation; Elliptic curve; X F Y; POLYGONAL NUMBERS; PRODUCTS; SYSTEM; SUMS;
D O I
10.1007/s10998-020-00333-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, we prove that the Diophantine system f (z) = f (x) + f (y) = f (u) - f (v) = f (p) f (q) has infinitely many integer solutions for f (X) = X(X + a) with nonzero integers a = 0, 1, 4 (mod 5). Second, we show that the above Diophantine system has an integer parametric solution for f (X) = X(X + a) with nonzero integers a, if there are integers m, n, k such that (n2 - m2)(4mnk(k + a + 1) + a(m2 + 2mn - n2)) = 0 (mod (m2 + n2)2), (m2 + 2mn - n2)((m2 - 2mn - n2)k(k + a + 1) - 2amn) = 0 (mod (m2 + n2)2), where k = 0 (mod 4) when a is even, and k = 2 (mod 4) when a is odd. Third, we get that the Diophantine system f (z) = f (x) + f (y) = f (u) - f (v) = f (p) f (q) = f (r) f (s) has a five-parameter rational solution for f (X) = X(X + a) with nonzero rational number a and infinitely many nontrivial rational parametric solutions for f (X) = X(X + a)(X + b) with nonzero integers a, b and a = b. Finally, we raise some related questions.
引用
收藏
页码:134 / 148
页数:15
相关论文
共 50 条
  • [21] On arithmetic of polynomials.
    Kamke, E
    MATHEMATISCHE ZEITSCHRIFT, 1924, 19 : 247 - 264
  • [23] The Zagier polynomials. Part II: Arithmetic properties of coefficients
    Mark W. Coffey
    Valerio De Angelis
    Atul Dixit
    Victor H. Moll
    Armin Straub
    Christophe Vignat
    The Ramanujan Journal, 2014, 35 : 361 - 390
  • [24] ARITHMETIC FUNCTIONS OF POLYNOMIALS
    COHEN, E
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (06) : 458 - 458
  • [25] The Zagier polynomials. Part II: Arithmetic properties of coefficients
    Coffey, Mark W.
    De Angelis, Valerio
    Dixit, Atul
    Moll, Victor H.
    Straub, Armin
    Vignat, Christophe
    RAMANUJAN JOURNAL, 2014, 35 (03): : 361 - 390
  • [26] ARITHMETIC PROPERTIES OF THE SEQUENCE OF DEGREES OF STERN POLYNOMIALS AND RELATED RESULTS
    Ulas, Maciej
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (03) : 669 - 687
  • [27] The arithmetic of polynomials in a Galois field
    Carlitz, L
    AMERICAN JOURNAL OF MATHEMATICS, 1932, 54 : 39 - 50
  • [28] A CONTRIBUTION TO THE ARITHMETIC OF GENERALIZED POLYNOMIALS
    Skula, Ladislav
    APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT II, 2007, : 123 - 129
  • [29] NONSTANDARD ARITHMETIC OF ITERATED POLYNOMIALS
    YASUMOTO, M
    MANUSCRIPTA MATHEMATICA, 1990, 66 (03) : 227 - 235
  • [30] On the Arithmetic of Generalized Fekete Polynomials
    Minac, Jan
    Nguyen, Tung T.
    Tan, Nguyen Duy
    EXPERIMENTAL MATHEMATICS, 2024, 33 (04) : 723 - 754