High-β, improved confinement reversed-field pinch plasmas at high density

被引:15
|
作者
Wyman, M. D. [1 ]
Chapman, B. E. [1 ]
Ahn, J. W. [1 ]
Almagri, A. F. [1 ]
Anderson, J. K. [1 ]
Bonomo, F. [2 ]
Brower, D. L. [3 ]
Combs, S. K. [4 ]
Craig, D. [1 ,5 ]
Den Hartog, D. J. [1 ]
Deng, B. H. [3 ]
Ding, W. X. [3 ]
Ebrahimi, F. [1 ]
Ennis, D. A. [1 ]
Fiksel, G. [1 ]
Foust, C. R. [4 ]
Franz, P. [2 ]
Gangadhara, S. [1 ]
Goetz, J. A. [1 ]
O'Connell, R. [1 ]
Oliva, S. P. [1 ]
Prager, S. C. [1 ]
Reusch, J. A. [1 ]
Sarff, J. S. [1 ]
Stephens, H. D. [1 ]
Yates, T. [3 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[5] Wheaton Coll, Wheaton, IL 60187 USA
关键词
D O I
10.1063/1.2835439
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In Madison Symmetric Torus [Dexter , Fusion Technol. 19, 131 (1991)] discharges where improved confinement is brought about by modification of the current profile, pellet injection has quadrupled the density, reaching n(e)=4x10(19) m(-3). Without pellet injection, the achievable density in improved confinement discharges had been limited by edge-resonant tearing instability. With pellet injection, the total beta has been increased to 26%, and the energy confinement time is comparable to that at low density. Pressure-driven local interchange and global tearing are predicted to be linearly unstable. Interchange has not yet been observed experimentally, but there is possible evidence of pressure-driven tearing, an instability usually driven by the current gradient in the reversed-field pinch. (c) 2008 American Institute of Physics.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] FLUCTUATION-INDUCED CURRENT AND ENERGETIC ELECTRONS IN REVERSED-FIELD PINCH PLASMAS
    WANG, AK
    SONG, XM
    QIU, XM
    PLASMA PHYSICS AND CONTROLLED FUSION, 1995, 37 (06) : 647 - 655
  • [42] Fast ion confinement in the three-dimensional helical reversed-field pinch
    Anderson, J. K.
    Capecchi, W.
    Eilerman, S.
    Koliner, J. J.
    Nornberg, M. D.
    Reusch, J. A.
    Sarff, J. S.
    Lin, L.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (09)
  • [43] REVERSED-FIELD PINCH REACTOR (RFPR)
    HAGENSON, RL
    KRAKOWSKI, RA
    THOMASSEN, KI
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1977, 27 (NOV): : 47 - 48
  • [44] THE STATUS OF REVERSED-FIELD PINCH EXPERIMENTS
    BAKER, DA
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1982, 41 : 165 - 166
  • [45] REVERSED-FIELD PINCH STARTUP STUDIES
    CARAMANA, EJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 1025 - 1025
  • [46] REVERSED-FIELD PINCH RESEARCH AT PADUA
    ORTOLANI, S
    NUCLEAR FUSION, 1985, 25 (09) : 1291 - 1294
  • [47] Impurity effects on the ion temperature gradient mode in reversed-field pinch plasmas
    Liu, S. F.
    Guo, S. C.
    Zhang, C. L.
    Dong, J. Q.
    Carraro, L.
    Wang, Z. R.
    NUCLEAR FUSION, 2011, 51 (08)
  • [48] Electron temperature gradient driven instabilities in helical reversed-field pinch plasmas
    Predebon, I
    Xanthopoulos, P.
    Gobbin, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (05)
  • [49] Stepped pressure equilibrium with relaxed flow and applications in reversed-field pinch plasmas
    Qu, Z. S.
    Dewar, R. L.
    Ebrahimi, F.
    Anderson, J. K.
    Hudson, S. R.
    Hole, M. J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (05)
  • [50] Toroidal kinetic ηi-mode study in reversed-field pinch plasmas
    Liu, Songfen
    Guo, S. C.
    Dong, J. Q.
    PHYSICS OF PLASMAS, 2010, 17 (05)