Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance

被引:19
|
作者
Lodge, M. S. [1 ,2 ]
Tang, C. [3 ]
Blue, B. T. [1 ,2 ]
Hubbard, W. A. [4 ,5 ]
Martini, A. [3 ]
Dawson, B. D. [1 ,2 ]
Ishigami, M. [1 ,2 ]
机构
[1] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[2] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32816 USA
[3] Univ Calif Merced, Sch Engn, Merced, CA 95343 USA
[4] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
美国国家科学基金会;
关键词
ENERGY-DISSIPATION; DIFFUSION; FRICTION; FILMS; SUPERLUBRICITY; WEAR; AU; CU;
D O I
10.1038/srep31837
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to test recently predicted ballistic nanofriction (ultra-low drag and enhanced lubricity) of gold nanocrystals on graphite at high surface speeds, we use the quartz microbalance technique to measure the impact of deposition of gold nanocrystals on graphene. We analyze our measurements of changes in frequency and dissipation induced by nanocrystals using a framework developed for friction of adatoms on various surfaces. We find the lubricity of gold nanocrystals on graphene to be even higher than that predicted for the ballistic nanofriction, confirming the enhanced lubricity predicted at high surface speeds. Our complementary molecular dynamics simulations indicate that such high lubricity is due to the interaction strength between gold nanocrystals and graphene being lower than previously assumed for gold nanocrystals and graphite.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals
    Tang, Lirong
    Chen, Weixiang
    Chen, Bo
    Lv, Rixin
    Zheng, Xinyu
    Rong, Cheng
    Lu, Beili
    Huang, Biao
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 327
  • [42] The electrochemical quartz crystal microbalance as a sensor in the gold thiosulfate leaching process
    Breuer, PL
    Jeffrey, MI
    Tan, EHK
    Bott, AW
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2002, 32 (10) : 1167 - 1174
  • [43] Electrochemical Quartz Crystal Microbalance Studies of Gold Oxidation in Cyanide Baths
    Liu, Zhengwei
    Wu, Jun
    West, Alan C.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (01) : D1 - D4
  • [44] Stable mercury and carbon films on gold for electrochemical quartz crystal microbalance
    Yoon, S
    Jung, MC
    Cho, K
    Kim, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 80 - COLL
  • [45] Gold clusters sliding on graphite: a possible quartz crystal microbalance experiment?
    Pisov, S.
    Tosatti, E.
    Tartaglino, U.
    Vanossi, A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (30)
  • [46] Characterization of Adsorption Behavior of Sucrose Monolaurate on Gold Substrate Using the Quartz Crystal Microbalance (QCM)
    Kwek, Jin W.
    Kim, Sanggu
    JOURNAL OF SURFACTANTS AND DETERGENTS, 2016, 19 (04) : 775 - 783
  • [47] SELF ASSEMBLED MONOLAYER OF ETHANTHIOL ON GOLD SURFACES BY QUARTZ CRYSTAL MICROBALANCE
    Cimpoca, Gh. V.
    Popescu, I. V.
    Dulama, I. D.
    Radulescu, C.
    Bancuta, I.
    Cimpoca, M.
    Cernica, I.
    Schiopu, V.
    Danila, M.
    Gavrila, R.
    CAS: 2009 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, PROCEEDINGS, 2009, : 135 - +
  • [48] A nanocell for quartz crystal microbalance and quartz crystal microbalance with dissipation-monitoring sensing
    Ohlsson, Gabriel
    Langhammer, Christoph
    Zoric, Igor
    Kasemo, Bengt
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (08):
  • [49] Fabrication of Gold Nanostructures on Quartz Crystal Microbalance Surface Using Nanoimprint Lithography for Sensing Applications
    Nishitsuji, Ryosuke
    Sueyoshi, Kenji
    Hisamoto, Hideaki
    Endo, Tatsuro
    MICROMACHINES, 2022, 13 (09)
  • [50] The electrochemical quartz crystal microbalance as a sensor in the gold thiosulfate leaching process
    P.L. Breuer
    M.I. Jeffrey
    E.H.K. Tan
    A.W. Bott
    Journal of Applied Electrochemistry, 2002, 32 : 1167 - 1174