Polycyclic Arenes Dihydrodinaphthopentacene-based Hole-Transporting Materials for Perovskite Solar Cells Application

被引:6
|
作者
Chandrasekaran, Dharuman [1 ]
Chiu, Yu-Lin [2 ]
Yu, Chun-Kai [1 ]
Yen, Yung-Sheng [1 ]
Chang, Yuan-Jay [2 ]
机构
[1] Chung Yuan Christian Univ, Dept Chem, Taoyuan 320, Taiwan
[2] Tunghai Univ, Dept Chem, Taichung 407, Taiwan
关键词
Dihydrodinaphthopentacene; Perovskite Solar Cells; Hole-transporting materials; HIGHLY EFFICIENT; HALIDE PEROVSKITES; SMALL MOLECULES; CORE;
D O I
10.1002/asia.202100985
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, two D-pi-D type compounds, C1 and C2, containing dihydrodinaphthopentacene (DHDNP) as a pi-bridge, p-methoxydiphenylamine and p-methoxytriphenylamine groups as the donor groups were synthesized. The four 4-hexylphenyl groups at the sp(3)-carbon bridges of DHDNP were acquainted with control morphology and improving solubility. The light absorption, energy level, thermal properties, and application as hole-transporting materials in perovskite solar cells of these compounds were fully investigated. The HOMO/LUMO levels and energy gaps of these DHDNP-based molecules are suitable for use as hole-transporting materials in PSCs. The best power conversion efficiencies of the PVSCs based on the C1 and C2 are 15.96% and 12.86%, respectively. The performance of C1 is comparable to that of the reference compound spiro-OMeTAD (16.38%). Compared with spiro-OMeTAD, the C1-based PVSC device showed good stability, which was slightly decreased to 98.68% of its initial efficiency after 48 h and retained 81% of its original PCE after 334 h without encapsulation. These results reveal the potential usefulness of the DHDNP building block for further development of economical and highly efficient HTMs for PVSCs.
引用
收藏
页码:3719 / 3728
页数:10
相关论文
共 50 条
  • [21] Benzotrithiophene-Based Hole-Transporting Materials for 18.2% Perovskite Solar Cells
    Molina-Ontoria, Agustin
    Zimmermann, Iwan
    Garcia-Benito, Ines
    Gratia, Paul
    Roldan-Carmona, Cristina
    Aghazada, Sadig
    Graetzel, Michael
    Nazeeruddin, Mohammad Khaja
    Martin, Nazario
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (21) : 6270 - 6274
  • [22] [2.2]Paracyclophane-based hole-transporting materials for perovskite solar cells
    Lin, Yin-Sheng
    Li, Hsin
    Yu, Wen-Sheng
    Wang, Szu-Tan
    Chang, Yi-Min
    Liu, Tsung-Hsin
    Li, Shao-Sian
    Watanabe, Motonori
    Chiu, Hsiao-Han
    Wang, Di-Yan
    Chang, Yuan Jay
    JOURNAL OF POWER SOURCES, 2021, 491 (491)
  • [23] Simple Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells
    Lv, Songtao
    Song, Yakun
    Xiao, Junyan
    Zhu, Lifeng
    Shi, Jiangjian
    Wei, Huiyun
    Xu, Yuzhuan
    Dong, Juan
    Xu, Xin
    Wang, Shirong
    Xiao, Yin
    Luo, Yanhong
    Li, Dongmei
    Li, Xianggao
    Meng, Qingbo
    ELECTROCHIMICA ACTA, 2015, 182 : 733 - 741
  • [24] Review of current progress in hole-transporting materials for perovskite solar cells
    Prerna Mahajan
    Bhavya Padha
    Sonali Verma
    Vinay Gupta
    Ram Datt
    Wing Chung Tsoi
    Soumitra Satapathi
    Sandeep Arya
    JournalofEnergyChemistry, 2022, 68 (05) : 330 - 386
  • [25] Review of current progress in hole-transporting materials for perovskite solar cells
    Mahajan, Prerna
    Padha, Bhavya
    Verma, Sonali
    Gupta, Vinay
    Datt, Ram
    Tsoi, Wing Chung
    Satapathi, Soumitra
    Arya, Sandeep
    JOURNAL OF ENERGY CHEMISTRY, 2022, 68 : 330 - 386
  • [26] Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core
    Santos, Jose
    Calbo, Joaquin
    Sandoval-Torrientes, Rafael
    Garcia-Benito, Ines
    Kanda, Hiroyuki
    Zimmermann, Iwan
    Arago, Juan
    Nazeeruddin, Mohammad Khaja
    Orti, Enrique
    Martin, Nazario
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) : 28214 - 28221
  • [27] Tetraphenylmethane-Arylamine Hole-Transporting Materials for Perovskite Solar Cells
    Liu, Xuepeng
    Kong, Fantai
    Cheng, Tai
    Chen, Wangchao
    Tan, Zhan'ao
    Yu, Ting
    Guo, Fuling
    Chen, Jian
    Yao, Jianxi
    Dai, Songyuan
    CHEMSUSCHEM, 2017, 10 (05) : 968 - 975
  • [28] Dibenzoquinquethiophene- and Dibenzosexithiophene-Based Hole-Transporting Materials for Perovskite Solar Cells
    Urieta-Mora, Javier
    Zimmermann, Iwan
    Arago, Juan
    Molina-Ontoria, Agustin
    Orti, Enrique
    Martin, Nazario
    Nazeeruddin, Mohammad Khaja
    CHEMISTRY OF MATERIALS, 2019, 31 (17) : 6435 - 6442
  • [29] Molecular designing of triphenylamine-based hole-transporting materials for perovskite solar cells
    Rezaei, Farideh
    Mohajeri, Afshan
    SOLAR ENERGY, 2021, 221 : 536 - 544
  • [30] Benzodithiophene Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells
    Vegiraju, Sureshraju
    Ke, Weijun
    Priyanka, Pragya
    Ni, Jen-Shyang
    Wu, Yi-Ching
    Spanopoulos, Ioannis
    Yau, Shueh Lin
    Marks, Tobin J.
    Chen, Ming-Chou
    Kanatzidis, Mercouri G.
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (45)