Harmonic oscillator group and Laguerre 2D polynomials

被引:6
|
作者
Khan, S [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Laguerre 2D polynomials; Lie algebra; generating relations;
D O I
10.1016/S0034-4877(03)90014-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we derive some generating relations involving Laguerre 2D polynomials (L2DP) L-m,L-n (U; z, (z) over bar) of two variables with an arbitrary 2D matrix U as a parameter by relating these polynomials to the harmonic oscillator group G(0, 1). Certain special cases yielding inevitably many new and known generating relations for the polynomials related to L2DP are also discussed.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 50 条
  • [21] Assess harmonic currents of electric locomotive with Laguerre polynomials
    Wang, Gang
    Yang, Hong-Geng
    Dianli Zidonghua Shebei / Electric Power Automation Equipment, 2006, 26 (06): : 44 - 47
  • [22] The 2D κ-Dirac oscillator
    Andrade, Fabiano M.
    Silva, Edilberto O.
    PHYSICS LETTERS B, 2014, 738 : 44 - 47
  • [23] Classical trajectories from the zeros of the quantum potential: the 2D isotropic harmonic oscillator
    Silva-Ortigoza, Gilberto
    Ortiz-Flores, Jessica
    Teresa Sosa-Sanchez, Citlalli
    Silva-Ortigoza, Ramon
    PHYSICA SCRIPTA, 2024, 99 (03)
  • [24] Spectrum and a Trace Formula for a Compactly Supported Perturbation of the 2D Harmonic Oscillator in a Strip
    Z. Yu. Fazullin
    I. G. Nugaeva
    Differential Equations, 2019, 55 : 677 - 687
  • [25] Spectrum and a Trace Formula for a Compactly Supported Perturbation of the 2D Harmonic Oscillator in a Strip
    Fazullin, Z. Yu.
    Nugaeva, I. G.
    DIFFERENTIAL EQUATIONS, 2019, 55 (05) : 677 - 687
  • [26] Angular momentum and energy structure of the coherent state of a 2D isotropic harmonic oscillator
    Liu, YF
    Huo, WJ
    Zeng, JY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2000, 33 (03) : 487 - 490
  • [27] Charlier polynomials and charlier oscillator as discrete realization of the harmonic oscillator
    Borzov V.V.
    Damaskinskii E.V.
    Journal of Mathematical Sciences, 2005, 128 (5) : 3161 - 3176
  • [28] A combinatorial approach to the 2D-Hermite and 2D-Laguerre polynomials
    Ismail, Mourad E. H.
    Zeng, Jiang
    ADVANCES IN APPLIED MATHEMATICS, 2015, 64 : 70 - 88
  • [29] Rotation of 2D orthogonal polynomials
    Yang, Bo
    Flusser, Jan
    Kautsky, Jaroslav
    PATTERN RECOGNITION LETTERS, 2018, 102 : 44 - 49
  • [30] Entropy of Hermite polynomials with application to the harmonic oscillator
    VanAssche, W
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY, DECEMBER 1996, SUPPLEMENT: NUMERICAL ANALYSIS, 1996, : 85 - 96