Effects of air pollution in Spatio-temporal modeling of asthma-prone areas using a machine learning model

被引:32
|
作者
Razavi-Termeh, Seyed Vahid [1 ]
Sadeghi-Niaraki, Abolghasem [1 ,2 ,3 ]
Choi, Soo-Mi [2 ,3 ]
机构
[1] KN Toosi Univ Technol, Fac Geodesy & Geomat Engn, Geoinformat Tech Ctr Excellence, Tehran 19697, Iran
[2] Sejong Univ, Dept Comp Sci & Engn, Seoul, South Korea
[3] Sejong Univ, Convergence Engn Intelligent Drone, Seoul, South Korea
关键词
Asthma; Air pollution; Machine learning; Spatio-temporal modeling; CHILDHOOD ASTHMA; RANDOM FOREST; RISK; EMISSIONS; EXPOSURE; OZONE; CHINA; CHILDREN; QUALITY; IMPACT;
D O I
10.1016/j.envres.2021.111344
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Industrialization and increasing urbanization have led to increased air pollution, which has a devastating effect on public health and asthma. This study aimed to model the spatial-temporal of asthma in Tehran, Iran using a machine learning model. Initially, a spatial database was created consisting of 872 locations of asthma children and six air pollution parameters, including carbon monoxide (CO), particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) in four-seasons (spring, summer, autumn, and winter). Spatial-temporal modeling and mapping of asthma-prone areas were performed using a random forest (RF) model. For Spatio-temporal modeling and assessment, 70% and 30% of the dataset were used, respectively. The Spearman correlation and RF model findings showed that during different seasons, the PM2.5 parameter had the most important effect on asthma occurrence in Tehran. The assessment of the Spatio-temporal modeling of asthma using the receiver operating characteristic (ROC)-area under the curve (AUC) showed an accuracy of 0.823, 0.821, 0.83, and 0.827, respectively for spring, summer, autumn, and winter. According to the results, asthma occurs more often in autumn than in other seasons.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors
    Yanosky, Jeff D.
    Paciorek, Christopher J.
    Laden, Francine
    Hart, Jaime E.
    Puett, Robin C.
    Liao, Duanping
    Suh, Helen H.
    ENVIRONMENTAL HEALTH, 2014, 13
  • [22] Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors
    Jeff D Yanosky
    Christopher J Paciorek
    Francine Laden
    Jaime E Hart
    Robin C Puett
    Duanping Liao
    Helen H Suh
    Environmental Health, 13
  • [23] Using spatio-temporal modeling for exposure assessment in an investigation of fine particulate air pollution and cardiovascular mortality
    Dabass, Arvind
    Talbott, Evelyn O.
    Bilonick, Richard A.
    Rager, Judith R.
    Venkat, Arvind
    Marsh, Gary M.
    Duan, Chunzhe
    Xue, Tao
    ENVIRONMENTAL RESEARCH, 2016, 151 : 564 - 572
  • [24] Hybrid Model for Urban Air Pollution Forecasting: A Stochastic Spatio-Temporal Approach
    Russo, Ana
    Soares, Amilcar O.
    MATHEMATICAL GEOSCIENCES, 2014, 46 (01) : 75 - 93
  • [25] Hybrid Model for Urban Air Pollution Forecasting: A Stochastic Spatio-Temporal Approach
    Ana Russo
    Amílcar O. Soares
    Mathematical Geosciences, 2014, 46 : 75 - 93
  • [26] Spatio-Temporal Modeling to Predict Intra-Urban Variation in Air Pollution Levels
    Szpiro, A. A.
    Sampson, P. D.
    Sheppard, L.
    Wilton, D.
    Larson, T.
    Lumley, T.
    Adar, S. D.
    Kaufman, J.
    EPIDEMIOLOGY, 2008, 19 (06) : S322 - S322
  • [27] Predicting the emplacement of Cordilleran porphyry copper systems using a spatio-temporal machine learning model
    Diaz-Rodriguez, Julian
    Muller, R. Dietmar
    Chandra, Rohitash
    ORE GEOLOGY REVIEWS, 2021, 137
  • [28] Modelling the seasonal dynamics of Aedesalbopictus populations using a spatio-temporal stacked machine learning model
    Da Re, Daniele
    Marini, Giovanni
    Bonannella, Carmelo
    Laurini, Fabrizio
    Manica, Mattia
    Anicic, Nikoleta
    Albieri, Alessandro
    Angelini, Paola
    Arnoldi, Daniele
    Bertola, Federica
    Caputo, Beniamino
    De Liberato, Claudio
    della Torre, Alessandra
    Flacio, Eleonora
    Franceschini, Alessandra
    Gradoni, Francesco
    Kadriaj, Perparim
    Lencioni, Valeria
    Del Lesto, Irene
    Russa, Francesco La
    Lia, Riccardo Paolo
    Montarsi, Fabrizio
    Otranto, Domenico
    L'Ambert, Gregory
    Rizzoli, Annapaola
    Rombola, Pasquale
    Romiti, Federico
    Stancher, Gionata
    Torina, Alessandra
    Velo, Enkelejda
    Virgillito, Chiara
    Zandonai, Fabiana
    Rosa, Roberto
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [29] Precipitation Modeling Based on Spatio-Temporal Variation in Lake Urmia Basin Using Machine Learning Methods
    Arbabi, Sajjad
    Sattari, Mohammad Taghi
    Attar, Nasrin Fathollahzadeh
    Milewski, Adam
    Sakizadeh, Mohamad
    WATER, 2024, 16 (09)
  • [30] Spatio-temporal modeling of PM2.5 risk mapping using three machine learning algorithms
    Shogrkhodaei, Seyedeh Zeinab
    Razavi-Termeh, Seyed Vahid
    Fathnia, Amanollah
    ENVIRONMENTAL POLLUTION, 2021, 289