Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery

被引:99
|
作者
Lin, Zhiyuan [1 ]
Guo, Xianwei [1 ]
Yu, Haijun [1 ]
机构
[1] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Modified silyl-terminated polyether; Cross-linking; Polymer electrolyte; High ionic conductivity; Lithium metal battery; LI-ION BATTERIES; SOLID-STATE; HIGH-ENERGY; RECHARGEABLE BATTERIES; SUPERIONIC CONDUCTORS; HIGH-VOLTAGE; SIDE-CHAINS; CONDUCTIVITY; ANODES; MECHANISMS;
D O I
10.1016/j.nanoen.2017.10.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer electrolyte has been considered to eliminate the safety issue that caused by the lithium dendrite growth in the liquid electrolyte for the high-energy lithium metal battery. However, the practical applications of polymer electrolyte are still impeded by the low Li ionic conductivity, weak interfacial compatibility, low thermal stability and narrow electrochemical window. In this study, we have proposed a novel modified silylterminated polyether based polymer electrolyte by a cross-linking fabrication method. With a three-dimensional network structure, the amorphous polymer electrolyte has high ionic conductivity (similar to 0.36 mS cm(-1)) at room temperature, much higher thermal stability (T-m = 379 degrees C), high lithium ion transference number (similar to 0.65), stable electrochemical window up to 5.0 V (vs. Li+/Li) and an excellent compatibility to the electrode. With LiFePO4 cathode and this polymer electrolyte, the lithium metal battery delivers the high specific capacity of similar to 130 mA h g(-1) at 1 C rate over 300 cycles, and similar to 105 mA h g(-1) at 3 C rate with a superb cycling stability over 600 cycles at room temperature. We believe that this polymer electrolyte is a promising candidate for the practical applications and brings a new way to develop the high performance electrolyte for the lithium metal battery.
引用
收藏
页码:646 / 653
页数:8
相关论文
共 50 条
  • [21] A high-performance TPGDA/PETEA composite gel polymer electrolyte for lithium metal batteries
    Chen, Zhifu
    Pei, Quan
    An, Zhitao
    Tong, Yiting
    Zhang, Qingfeng
    Xie, Shuhong
    CHEMICAL COMMUNICATIONS, 2023, 59 (69) : 10416 - 10419
  • [22] A Hierarchically Designed Janus Polymer Electrolyte for High-Performance Lithium-Metal Batteries
    Zhang, Liting
    Jo, Seunghwan
    Shin, Ki Hoon
    Kim, Eunmin
    Lee, Keon Beom
    Cui, Ruhao
    Kim, Min-Cheol
    Hong, John
    Sohn, Jung Inn
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [23] Chloride-Reinforced Solid Polymer Electrolyte for High-Performance Lithium Metal Batteries
    Zhang, Qing
    Sun, Qifang
    Wang, Su
    Li, Chen
    Xu, Chaoran
    Ma, Yue
    Zhang, Hongzhou
    Song, Dawei
    Shi, Xixi
    Li, Chunliang
    Zhang, Lianqi
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (14) : 18252 - 18261
  • [24] Constructing a 3D crumpled MXene host for high-performance lithium metal anode
    Yang, Bingjun
    Liu, Bao
    Zhu, Yirun
    Ding, Yunxia
    Yang, Juan
    Ma, Pengjun
    Zhang, Xu
    Chen, Jiangtao
    SCRIPTA MATERIALIA, 2024, 242
  • [25] An acetylene black modified gel polymer electrolyte for high-performance lithium-sulfur batteries
    Yang, Dezhi
    He, Liang
    Liu, Yu
    Yan, Wenqi
    Liang, Shishuo
    Zhu, Yusong
    Fu, Lijun
    Chen, Yuhui
    Wu, Yuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (22) : 13679 - 13686
  • [26] Preparation and Properties of a High-Performance EOEOEA-Based Gel-Polymer-Electrolyte Lithium Battery
    Ding, Wenwen
    Wei, Chun
    Wang, Shiqi
    Zou, Linmin
    Gong, Yongyang
    Liu, Yuanli
    Zang, Limin
    POLYMERS, 2019, 11 (08)
  • [27] Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery
    Long, Man-Cheng
    Wang, Ting
    Duan, Ping-Hui
    Gao, You
    Wang, Xiu-Li
    Wu, Gang
    Wang, Yu-Zhong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 65 : 9 - 18
  • [28] Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery
    Man-Cheng Long
    Ting Wang
    Ping-Hui Duan
    You Gao
    Xiu-Li Wang
    Gang Wu
    Yu-Zhong Wang
    Journal of Energy Chemistry , 2022, (02) : 9 - 18
  • [29] Anti-swelling gel polymer electrolyte membrane for high-performance lithium-ion battery
    Wang, Chenqiao
    Ruan, Yonghong
    Xiong, Xiaopeng
    JOURNAL OF MEMBRANE SCIENCE, 2025, 716
  • [30] In situ construction of 3D crossing-linked gel polymer electrolyte toward high performance and safety lithium metal batteries
    Li, Huilan
    Feng, Tingting
    Gao, Jian
    Wu, Mengqiang
    JOURNAL OF POWER SOURCES, 2024, 618