Enhance Content Selection for Multi-Document Summarization with Entailment Relation

被引:2
|
作者
Wang, Yu-Yun [1 ]
Wu, Jhen-Yi [1 ]
Chou, Tzu-Hsuan [1 ]
Lin, Ying-Jia [1 ]
Kao, Hung-Yu [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
关键词
abstractive summarization; entailment relation; multi-document summarization;
D O I
10.1109/TAAI51410.2020.00030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic text summarization is one of the common tasks in natural language processing. The main task is to generate a shorter version based on the original text and maintain relevant information. This paper studies multi-document summarization (MDS) that applies to news articles. MDS has two significant issues which are information overlap and information difference among multiple articles. Existing models mostly deal with MDS from the perspective of single document summarization (SDS). The models do not consider the relation between sentences in multiple news articles. Our proposed method deals with the issue and consists of two models. The sentence selector model selects representative sentences based on the entailment relation in different articles. The content is related to the event of the article extracted through the algorithm. The summary generator model generates a final summary to ensure that the summary contains no redundancy and maintains vital information. Experiment results show that our proposed model has effectively improved in the evaluation results. The main contribution of our approach is to use the entailment relation to obtain key content in multiple articles. Adding semantic comprehension can identify salient information clearly and improve the accuracy of MDS.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 50 条
  • [31] Multi-document summarization based on lexical chains
    Chen, YM
    Wang, XL
    Liu, BQ
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 1937 - 1942
  • [32] Disentangling Specificity for Abstractive Multi-document Summarization
    Ma, Congbo (congbo.ma@mq.edu.au), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [33] Automatic multi-document summarization for digital libraries
    Ou Shiyan
    Khoo, Christopher S. G.
    Goh, Dion H.
    PROCEEDINGS OF THE ASIA-PACIFIC CONFERENCE ON LIBRARY & INFORMATION EDUCATION & PRACTICE 2006: PREPARING INFORMATION PROFESSIONALS FOR LEADERSHIP IN THE NEW AGE, 2006, : 72 - +
  • [34] Multi-document summarization for terrorism information extraction
    Wang, Fu Lee
    Yang, Christopher C.
    Shi, Xiaodong
    INTELLIGENCE AND SECURITY INFORMATICS, PROCEEDINGS, 2006, 3975 : 602 - 608
  • [35] Unsupervised Multi-document Summarization with Holistic Inference
    Zhang, Haopeng
    Cho, Sangwoo
    Song, Kaiqiang
    Wang, Xiaoyang
    Wang, Hongwei
    Zhang, Jiawei
    Yu, Dong
    13TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING AND THE 3RD CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, IJCNLP-AACL 2023, 2023, : 123 - 133
  • [36] Enhancing multi-document summarization using concepts
    Rao, Pattabhi R. K.
    Devi, S. Lalitha
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (02):
  • [37] Mixture of Topic Model for Multi-document Summarization
    Liu Na
    Li Ming-xia
    Lu Ying
    Tang Xiao-jun
    Wang Hai-wen
    Xiao Peng
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 5168 - 5172
  • [38] Genetic algorithm based multi-document summarization
    Liu, Dexi
    He, Yanxiang
    Ji, Donghong
    Yang, Hua
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 1140 - 1144
  • [39] Multi-document summarization using closed patterns
    Qiang, Ji-Peng
    Chen, Ping
    Ding, Wei
    Xie, Fei
    Wu, Xindong
    KNOWLEDGE-BASED SYSTEMS, 2016, 99 : 28 - 38
  • [40] A Game Theory Approach for Multi-document Summarization
    Ahmad, Amreen
    Ahmad, Tanvir
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (04) : 3655 - 3667