Remarks on p-Laplacian Problems Depending on the Gradient

被引:0
|
作者
Bueno, H. [1 ]
Ercole, G. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
关键词
p-Laplacian; positive solution; sub- and super-solution method; dependence on the gradient; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper collects and summarizes results of existence of positive solutions for the p-Laplacian problem -Delta(p)u = omega(x) f(u, vertical bar del vertical bar) with Dirichlet boundary condition in a bounded domain Omega subset of R-N, where omega is a weight function and also for the problem in two positive parameters lambda and beta: { -Delta(p)u = lambda h(x,u) + beta f(x,u,del u) in Omega u = 0 on partial derivative Omega.
引用
收藏
页码:145 / 161
页数:17
相关论文
共 50 条
  • [21] Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
    El Manouni, Said
    Marino, Greta
    Winkert, Patrick
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 304 - 320
  • [22] Limit problems for a Fractional p-Laplacian as p → ∞
    Ferreira, Raul
    Perez-Llanos, Mayte
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02):
  • [23] Multiplicity of positive radial solutions of p-Laplacian problems with nonlinear gradient term
    Pei, Minghe
    Wang, Libo
    Lv, Xuezhe
    BOUNDARY VALUE PROBLEMS, 2017,
  • [24] Multiplicity of positive radial solutions of p-Laplacian problems with nonlinear gradient term
    Minghe Pei
    Libo Wang
    Xuezhe Lv
    Boundary Value Problems, 2017
  • [25] Global Existence for Parabolic Problems Involving the p-Laplacian and a Critical Gradient Term
    Dall'Aglio, A.
    Giachetti, D.
    de Leon, S. Segura
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (01) : 1 - 48
  • [26] Nonhomogeneous Dirichlet problems for the p-Laplacian
    Djairo G. De Figueiredo
    Jean-Pierre Gossez
    Pedro Ubilla
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [27] A multiplicity theorem for problems with the p-Laplacian
    Papageorgiou, Evgenia H.
    Papageorgiou, Nikolaos S.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) : 63 - 77
  • [28] Sandwich pairs in p-Laplacian problems
    Perera, Kanishka
    Schechter, Martin
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2007, 29 (01) : 29 - 34
  • [29] THE DUAL EIGENVALUE PROBLEMS FOR p-LAPLACIAN
    Cheng, Y. -H.
    Lian, W. -C.
    Wang, W. -C.
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 132 - 151
  • [30] ON FRACTIONAL p-LAPLACIAN PROBLEMS WITH WEIGHT
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (1-2) : 15 - 28