Comparative study of the airborne microbial communities and their functional composition in fine particulate matter (PM2.5) under non-extreme and extreme PM2.5 conditions

被引:44
|
作者
Abd Aziz, Azilah [1 ]
Lee, Kwangyul [1 ]
Park, Byeonghyeok [2 ]
Park, Hongjae [2 ]
Park, Kihong [1 ]
Choi, In-Geol [2 ]
Chang, In Seop [1 ]
机构
[1] GIST, Sch Earth Sci & Environm Engn, 123 Cheorndangwagi Ro, Gwangju 61005, South Korea
[2] Korea Univ, Coll Life Sci & Biotechnol, 5 Anam Ro, Seoul 02841, South Korea
关键词
Airborne microorganism; Microbial community; Shotgun metagenomics; Fine particulate matter; PM2.5; Functional composition; ASIAN DUST EVENTS; BACTERIAL COMMUNITIES; SEASONAL VARIABILITY; CHEMICAL CHARACTERISTICS; HUMAN HEALTH; MG-RAST; METAGENOMICS; PARTICLES; FUNGI; DIVERSITY;
D O I
10.1016/j.atmosenv.2018.09.027
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Asian dust (AD) events increase environmental pollution and have a detrimental effect on human health. Particulate matter with an aerodynamic diameter < 2.5 mu m (PM2.5) and containing airborne microorganisms increases during AD events due to the transportation of dust by wind from several arid regions in China. This study analyzed the bacterial and fungal communities associated with average daily PM2.5 concentrations less than (on non-event day: ND) and exceeding (on event day: ED) the air quality standard (36 mu g PM(2.5)m(-3)) set by the Korean government. The taxon compositions and functional genes of airborne microorganisms were assessed using shotgun metagenomics sequencing and metagenome rapid annotation using subsystem technology (MGRAST) analysis. MG-RAST is an open source web application, serving as a platform that automatically analyzes uploaded metagenomes. During ND, 51% of total bacteria sequences consisted of those from Proteobacwria, which were closely related to nitrogen-fixing bacterial species. A high percentage of functional genes consisted of those genes related to nitrogen metabolism, suggesting that the airborne microorganisms are associated with environmental nitrogen cycles. During ED, 57% of total bacteria sequences consisted of those from Bacteroidetes, accompanied by high relative abundance of sequences from pathogenic species of Bacillus and Staphylococcus. Fungal sequences were mainly composed of those from the phyla Ascomycota and Basidiomycota, which include spore -forming species transported frequently by wind. The abundance of Ascomycota sequences was higher in ED (81%) than in ND (22%) samples, and mainly included those from the plant pathogens Phaeosphaeria and Pyrenophora. These findings indicated that microbial composition shifted from ND to ED samples, even at the phylum level. This switch was likely due to the sources of dust particles, with those during ED being primarily
引用
收藏
页码:82 / 92
页数:11
相关论文
共 50 条
  • [21] Fine Particulate Matter (PM2.5) and the Risk of Stroke in the REGARDS Cohort
    McClure, Leslie A.
    Loop, Matthew S.
    Crosson, William
    Kleindorfer, Dawn
    Kissela, Brett
    Al-Hamdan, Mohammad
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2017, 26 (08): : 1739 - 1744
  • [22] The health economic loss of fine particulate matter (PM2.5) in Beijing
    Li, Li
    Lei, Yalin
    Wu, Sanmang
    Chen, Jiabin
    Yan, Dan
    JOURNAL OF CLEANER PRODUCTION, 2017, 161 : 1153 - 1161
  • [23] Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China
    Shaomin Yan
    Guang Wu
    Scientific Reports, 6
  • [24] The relationship between fine particulate matter (PM2.5) and schizophrenia severity
    Rika Eguchi
    Daisuke Onozuka
    Kouji Ikeda
    Kenji Kuroda
    Ichiro Ieiri
    Akihito Hagihara
    International Archives of Occupational and Environmental Health, 2018, 91 : 613 - 622
  • [25] Biological effects of airborne fine particulate matter (PM2.5) exposure on pulmonary immune system
    Wei, Tingting
    Tang, Meng
    ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY, 2018, 60 : 195 - 201
  • [26] Growing Urbanization and the Impact on Fine Particulate Matter (PM2.5) Dynamics
    Han, Lijian
    Zhou, Weiqi
    Li, Weifeng
    SUSTAINABILITY, 2018, 10 (06):
  • [27] Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5)
    Chen, Lixin
    Liu, Chenming
    Zhang, Lu
    Zou, Rui
    Zhang, Zhiqiang
    SCIENTIFIC REPORTS, 2017, 7
  • [28] Atmospheric fine particulate matter (PM2.5) in Bloemfontein, South Africa
    van der Westhuizen, Deidre
    Howlett-Downing, Chantelle
    Molnar, Peter
    Boman, Johan
    Wichmann, Janine
    von Eschwege, Karel G.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2022,
  • [29] Hemolytic Properties of Fine Particulate Matter (PM2.5) in In Vitro Systems
    Bai, Jiahui
    Zhang, Mengyuan
    Shao, Longyi
    Jones, Timothy P.
    Feng, Xiaolei
    Huang, Man
    Berube, Kelly A.
    TOXICS, 2024, 12 (04)
  • [30] Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5)
    Lixin Chen
    Chenming Liu
    Lu Zhang
    Rui Zou
    Zhiqiang Zhang
    Scientific Reports, 7