Microstructural modeling and measurements of anisotropic plasticity in large scale additively manufactured 316L stainless steel

被引:12
|
作者
van Nuland, T. F. W. [1 ]
Belotti, L. Palmeira [1 ]
Hoefnagels, J. P. M. [1 ]
van Dommelen, J. A. W. [1 ]
Geers, M. G. D. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Wire plus arc additive manufacturing; Microstructural modeling; Crystal plasticity; 316L stainless steel; Yield stress anisotropy; Experimental characterization; CRYSTAL; DEFORMATION; COMPONENTS; MACRO;
D O I
10.1016/j.euromechsol.2022.104710
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the wire + arc additive manufacturing process-induced plastic anisotropy of 316L stainless steel is analyzed by means of detailed 3D microstructural modeling and compared to experimental tensile tests. A spatially varying representative grain texture and morphology are incorporated in a representative volume element having the size of a single fusion zone and which is generated using a 3D anisotropic Voronoi algorithm. The constitutive behavior is modeled at the grain scale by a finite element crystal plasticity framework, of which the corresponding parameters are obtained from experimental tensile tests in one of the processing directions. As a result of the spatially correlated grain orientations inside the fusion zone, distinct deformation patterns and strain localizations have been observed during experimental tensile tests. The strain fields obtained from numerical simulations are compared to the experimental deformation patterns and a remarkable correspondence is observed. Numerical simulations are also performed in various uniaxial loading directions to predict the 3D yield behavior. A strongly anisotropic plastic response is obtained and a convincing match between the numerical model and experimental tensile tests is found in various loading directions.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Deepak Kumar
    Suyog Jhavar
    Abhinav Arya
    K. G. Prashanth
    Satyam Suwas
    International Journal of Fracture, 2022, 235 : 61 - 78
  • [32] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Shamsujjoha, Md.
    Agnew, Sean R.
    Fitz-Gerald, James M.
    Moore, William R.
    Newman, Tabitha A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (07): : 3011 - 3027
  • [33] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Md. Shamsujjoha
    Sean R. Agnew
    James M. Fitz-Gerald
    William R. Moore
    Tabitha A. Newman
    Metallurgical and Materials Transactions A, 2018, 49 : 3011 - 3027
  • [34] Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L
    Bertsch, K. M.
    de Bellefon, G. Meric
    Kuehl, B.
    Thoma, D. J.
    ACTA MATERIALIA, 2020, 199 (199) : 19 - 33
  • [35] Texture dependent strain hardening in additively manufactured stainless steel 316L
    Kumar, Deepak
    Shankar, Gyan
    Prashanth, K. G.
    Suwas, Satyam
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 820
  • [36] Ballistic Performance of Additively Manufactured 316L Stainless Steel Spherical Fragments
    Xue H.
    Wang T.
    Huang G.
    Cui X.
    Han H.
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (02): : 395 - 406
  • [37] Nanoindentation Hardness and Corrosion Studies of Additively Manufactured 316L Stainless Steel
    Jennifer England
    Mohammad J. Uddin
    Erick Ramirez-Cedillo
    Darshan Karunarathne
    Seifollah Nasrazadani
    Teresa D. Golden
    Hector R. Siller
    Journal of Materials Engineering and Performance, 2022, 31 : 6795 - 6805
  • [38] Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel
    Jason R. Trelewicz
    Gary P. Halada
    Olivia K. Donaldson
    Guha Manogharan
    JOM, 2016, 68 : 850 - 859
  • [39] Corrosion behavior of additively manufactured 316L stainless steel in acidic media
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    MATERIALIA, 2018, 2 : 111 - 121
  • [40] Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel
    Trelewicz, Jason R.
    Halada, Gary P.
    Donaldson, Olivia K.
    Manogharan, Guha
    JOM, 2016, 68 (03) : 850 - 859