AutoImpute: Autoencoder based imputation of single-cell RNA-seq data

被引:112
|
作者
Talwar, Divyanshu [1 ]
Mongia, Aanchal [1 ]
Sengupta, Debarka [1 ,3 ]
Majumdar, Angshul [2 ]
机构
[1] Indraprastha Inst Informat Technol, Dept Comp Sci & Engn, Delhi, India
[2] Indraprastha Inst Informat Technol, Dept Elect & Commun Engn, Delhi, India
[3] Indraprastha Inst Informat Technol, Ctr Computat Biol, Delhi, India
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
Autoencoder; Dropout Events; Cell Type Separation; Gene Expression Matrix; Imputed Matrix;
D O I
10.1038/s41598-018-34688-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The emergence of single-cell RNA sequencing (scRNA-seq) technologies has enabled us to measure the expression levels of thousands of genes at single-cell resolution. However, insufficient quantities of starting RNA in the individual cells cause significant dropout events, introducing a large number of zero counts in the expression matrix. To circumvent this, we developed an autoencoder-based sparse gene expression matrix imputation method. AutoImpute, which learns the inherent distribution of the input scRNA-seq data and imputes the missing values accordingly with minimal modification to the biologically silent genes. When tested on real scRNA-seq datasets, AutoImpute performed competitively wrt., the existing single-cell imputation methods, on the grounds of expression recovery from subsampled data, cell-clustering accuracy, variance stabilization and cell-type separability.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] GE-Impute: graph embedding-based imputation for single-cell RNA-seq data
    Wu, Xiaobin
    Zhou, Yuan
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [32] scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder
    Yu, Bin
    Chen, Chen
    Qi, Ren
    Zheng, Ruiqing
    Skillman-Lawrence, Patrick J.
    Wang, Xiaolin
    Ma, Anjun
    Gu, Haiming
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [33] scIAE: an integrative autoencoder-based ensemble classification framework for single-cell RNA-seq data
    Yin, Qingyang
    Wang, Yang
    Guan, Jinting
    Ji, Guoli
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [34] Locality Sensitive Imputation for Single Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (08) : 822 - 835
  • [35] Mclmpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
    Mongia, Aanchal
    Sengupta, Debarka
    Majumdar, Angshul
    FRONTIERS IN GENETICS, 2019, 10
  • [36] Single-cell RNA-seq denoising using a deep count autoencoder
    Gökcen Eraslan
    Lukas M. Simon
    Maria Mircea
    Nikola S. Mueller
    Fabian J. Theis
    Nature Communications, 10
  • [37] Single-cell RNA-seq denoising using a deep count autoencoder
    Eraslan, Goekcen
    Simon, Lukas M.
    Mircea, Maria
    Mueller, Nikola S.
    Theis, Fabian J.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [38] ZINB-Based Graph Embedding Autoencoder for Single-Cell RNA-Seq Interpretations
    Yu, Zhuohan
    Lu, Yifu
    Wang, Yunhe
    Tang, Fan
    Wong, Ka-Chun
    Li, Xiangtao
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 4671 - 4679
  • [39] Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq
    Raevskiy, Mikhail
    Yanvarev, Vladislav
    Jung, Sascha
    Del Sol, Antonio
    Medvedeva, Yulia A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (07)
  • [40] scVGATAE: A Variational Graph Attentional Autoencoder Model for Clustering Single-Cell RNA-seq Data
    Liu, Lijun
    Wu, Xiaoyang
    Yu, Jun
    Zhang, Yuduo
    Niu, Kaixing
    Yu, Anli
    BIOLOGY-BASEL, 2024, 13 (09):