Rewarding Term Location Information to Enhance Probabilistic Information Retrieval

被引:0
|
作者
Zhao, Jiashu [1 ]
Huang, Jimmy Xiangji [2 ]
Wu, Shicheng [2 ]
机构
[1] York Univ, Dept Comp Sci & Engn, Informat Retrieval & Knowledge Management Res Lab, Toronto, ON, Canada
[2] York Univ, Sch Informat Technol, Informat Retrieval & Knowledge Management Res Lab, Toronto, ON, Canada
来源
SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL | 2012年
关键词
BM25-RT; Influence Shape Function;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the effect of rewarding terms according to their locations in documents for probabilistic information retrieval. The intuition behind our approach is that a large amount of authors would summarize their ideas in some particular parts of documents. In this paper, we focus on the beginning part of documents. Several shape functions are defined to simulate the influence of term location information. We propose a Reward Term Retrieval model that combines the reward terms' information with BM25 to enhance probabilistic information retrieval performance.
引用
收藏
页码:1137 / 1138
页数:2
相关论文
共 50 条
  • [31] On event spaces and probabilistic models in information retrieval
    Robertson, S
    INFORMATION RETRIEVAL, 2005, 8 (02): : 319 - 329
  • [32] ON MODELING INFORMATION-RETRIEVAL WITH PROBABILISTIC INFERENCE
    WONG, SKM
    YAO, YY
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1995, 13 (01) : 38 - 68
  • [33] A NETWORK APPROACH TO PROBABILISTIC INFORMATION-RETRIEVAL
    KWOK, KL
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1995, 13 (03) : 324 - 353
  • [34] On Event Spaces and Probabilistic Models in Information Retrieval
    Stephen Robertson
    Information Retrieval, 2005, 8 : 319 - 329
  • [35] Complete performance graphs in probabilistic information retrieval
    Sebe, N
    Huijsmans, DP
    Tian, Q
    Gevers, T
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 2, PROCEEDINGS, 2004, 3332 : 229 - 237
  • [36] A Probabilistic Topic-Based Ranking Framework for Location-Sensitive Domain Information Retrieval
    Li, Huajing
    Li, Zhisheng
    Lee, Wang-Chien
    Lee, Dik Lun
    PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2009, : 331 - 338
  • [37] SemApp: A Semantic Approach to Enhance Information Retrieval
    Neji, Sameh
    Chenaina, Tarek
    Shoeb, Abdullah M.
    Ben Ayed, Leila
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT III, 2021, 12951 : 62 - 78
  • [38] The active guidebook - Information retrieval by keyword and location
    Boyd, T
    Robinson, P
    NEW DEVELOPMENTS IN DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS, 2001, 70 : 55 - 66
  • [39] Location-based information retrieval framework
    Hariharan, G
    Mehta, S
    DATA MINING AND KNOWLEDGE DISCOVERY: TOOLS AND TECHNOLOGY V, 2003, 5098 : 235 - 243
  • [40] Combining location and feature information for multimedia retrieval
    Pan, Hong
    Yang, Yi
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2010, 38 (1-3) : 27 - 33