Selective transformation of Cu nanowires to Cu2S or CuS nanostructures and the roles of the Kirkendall effect and anion exchange reaction

被引:14
|
作者
Lee, Young-In [1 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Mat Sci & Engn, Seoul 139743, South Korea
基金
新加坡国家研究基金会;
关键词
Chalcogenides; Inorganic compounds; Interfaces; Nanostructures; Chemical synthesis; NANOTUBE ARRAYS; SULFIDE NANOCRYSTALS; HOLLOW SPHERES; COPPER; NANOPARTICLES; GROWTH; ROUTE;
D O I
10.1016/j.matchemphys.2016.05.048
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The selective chemical transformation of Cu nanowires to Cu2S or CuS nanostructures using simple, low-cost and scalable aqueous solution-based sulfurization at low temperatures are demonstrated. The reactive sacrificial Cu nanowire templates with controlled diameters of 270 and 35 nm were synthesized by template-directed electrochemical deposition using anodic alumina templates, and these templates were reacted with a 0.1 M thiourea solution at 90 degrees C for 10 h for chemical conversion to Cu2S or CuS nanostructures. Time-series sulfurization experiments indicate that the tubular shape evolved with continuous expansion of Kirkendall voids, which were generated by the differences in outward and inward diffusion rates of Cu and sulfur in Cu sulfide. In addition, a detailed investigation of the effect of the valence states of the sacrificial template surfaces on the stoichiometry of CuxS suggest that the anion exchange reaction in the initial stage of the transformation reaction is important in determining the valence states of the final products. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
  • [21] X-RAY-SPECTRA AND ELECTRONIC-STRUCTURES OF CUS AND CU2S
    SUGIURA, C
    YAMASAKI, H
    SHOJI, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (03) : 1172 - 1178
  • [22] Gas-phase substitution synthesis of Cu1.8S and Cu2S superlattice nanowires from CdS nanowires
    Kim, Han Sung
    Sung, Tae Kwang
    Jang, So Young
    Myung, Yoon
    Cho, Yong Jae
    Lee, Chi-Woo
    Park, Jeunghee
    Ahn, Jae-Pyoung
    Kim, Jin-Gyu
    Kim, Youn-joong
    CRYSTENGCOMM, 2011, 13 (06): : 2091 - 2095
  • [23] Preparation of Cu(OH)2/Cu2S arrays for enhanced hydrogen evolution reaction
    Xu, Xiangchao
    Qiao, Fen
    Liu, Yanzhen
    Liu, Wenjie
    BATTERY ENERGY, 2024, 3 (03):
  • [24] Synthesis and characterization of Cu2S nanostructures via cyclic microwave radiation
    Mousavi-Kamazani, Mehdi
    Salavati-Niasari, Masoud
    Sadeghinia, Mohammad
    SUPERLATTICES AND MICROSTRUCTURES, 2013, 63 : 248 - 257
  • [25] Multilevel resistance switching of individual Cu2S nanowires with inert electrodes
    Liu, Pei-Hsuan
    Lin, Ching-Chun
    Manekkathodi, Afsal
    Chen, Lih-Juann
    NANO ENERGY, 2015, 15 : 362 - 368
  • [26] Solution-Processed Cu2S Nanostructures for Solar Hydrogen Production
    Zhang, Xi
    Pollitt, Stephan
    Jung, Gihun
    Niu, Wenzhe
    Adams, Pardis
    Buhler, Jan
    Grundmann, Nora S.
    Erni, Rolf
    Nachtegaal, Maarten
    Ha, Neul
    Jung, Jisu
    Shin, Byungha
    Yang, Wooseok
    Tilley, S. David
    CHEMISTRY OF MATERIALS, 2023, 35 (06) : 2371 - 2380
  • [27] In Situ Electrochemical Oxidation of Cu2S into CuO Nanowires as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction
    Zuo, Yong
    Liu, Yongpeng
    Li, Junshan
    Du, Ruifeng
    Han, Xu
    Zhang, Ting
    Arbiol, Jordi
    Divins, Nuria J.
    Llorca, Jordi
    Guijarro, Nestor
    Sivula, Kevin
    Cabot, Andreu
    CHEMISTRY OF MATERIALS, 2019, 31 (18) : 7732 - 7743
  • [28] Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting
    Zhenzhen Li
    Zhonghai Zhang
    Nano Research, 2018, 11 : 1530 - 1540
  • [29] Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting
    Li, Zhenzhen
    Zhang, Zhonghai
    NANO RESEARCH, 2018, 11 (03) : 1530 - 1540
  • [30] X-RAY PHOTOELECTRON AND AUGER SPECTROSCOPIC STUDIES OF Cu2S AND CuS.
    Perry, Dale L.
    Journal of Materials Science Letters, 1986, 5 (04): : 384 - 386