Generalized Zero-Shot Learning via Disentangled Representation

被引:0
|
作者
Li, Xiangyu [1 ]
Xu, Zhe [1 ]
Wei, Kun [1 ]
Deng, Cheng [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-Shot Learning (ZSL) aims to recognize images belonging to unseen classes that are unavailable in the training process, while Generalized Zero-Shot Learning (GZSL) is a more realistic variant that both seen and unseen classes appear during testing. Most GZSL approaches achieve knowledge transfer based on the features of samples that inevitably contain information irrelevant to recognition, bringing negative influence for the performance. In this work, we propose a novel method, dubbed Disentangled-VAE, which aims to disentangle category-distilling factors and category-dispersing factors from visual as well as semantic features, respectively. In addition, a batch re-combining strategy on latent features is introduced to guide the disentanglement, encouraging the distilling latent features to be more discriminative for recognition. Extensive experiments demonstrate that our method outperforms the state-of-the-art approaches on four challenging benchmark datasets.
引用
收藏
页码:1966 / 1974
页数:9
相关论文
共 50 条
  • [31] Generalized Zero-Shot Image Classification via Partially-Shared Multi-Task Representation Learning
    Wang, Gerui
    Tang, Sheng
    ELECTRONICS, 2023, 12 (09)
  • [32] Zero-shot visual grounding via coarse-to-fine representation learning
    Mi, Jinpeng
    Jin, Shaofei
    Chen, Zhiqian
    Liu, Dan
    Wei, Xian
    Zhang, Jianwei
    NEUROCOMPUTING, 2024, 610
  • [33] Zero-Shot Classification with Discriminative Semantic Representation Learning
    Ye, Meng
    Guo, Yuhong
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5103 - 5111
  • [34] Zero-shot Learning via Simultaneous Generating and Learning
    Yu, Hyeonwoo
    Lee, Beomhee
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [35] Disentangling Before Composing: Learning Invariant Disentangled Features for Compositional Zero-Shot Learning
    Zhang, Tian
    Liang, Kongming
    Du, Ruoyi
    Chen, Wei
    Ma, Zhanyu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (02) : 1132 - 1147
  • [36] Zero-Shot Learning via Visual Abstraction
    Antol, Stanislaw
    Zitnick, C. Lawrence
    Parikh, Devi
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 401 - 416
  • [37] Learning Multiple Criteria Calibration for Generalized Zero-shot Learning
    Lu, Ziqian
    Lu, Zhe-Ming
    Yu, Yunlong
    He, Zewei
    Luo, Hao
    Zheng, Yangming
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [38] Synthetic Sample Selection for Generalized Zero-Shot Learning
    Gowda, Shreyank N.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2023, : 58 - 67
  • [39] Discriminative comparison classifier for generalized zero-shot learning
    Hou, Mingzhen
    Xia, Wei
    Zhang, Xiangdong
    Gao, Quanxue
    NEUROCOMPUTING, 2020, 414 (414) : 10 - 17
  • [40] Data-Free Generalized Zero-Shot Learning
    Tang, Bowen
    Zhang, Jing
    Yan, Long
    Yu, Qian
    Sheng, Lu
    Xu, Dong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 5108 - 5117