Properties of Metal-Graphene Contacts

被引:42
|
作者
Knoch, Joachim [1 ]
Chen, Zhihong [2 ,3 ]
Appenzeller, Joerg [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Inst Semicond Elect, D-52074 Aachen, Germany
[2] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
关键词
Contacts; graphene; graphene field-effect transistor (GFET); metal-graphene coupling; TRANSISTORS;
D O I
10.1109/TNANO.2011.2178611
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a study on the metal-graphene contact properties. Utilizing a dual-gate field-effect transistor device, an energetic separation between the Fermi level and the Dirac point in the contact areas can be adjusted deliberately by applying an appropriate front-gate voltage that acts only on the channel. This front-gate voltage is compensated by an opposite large-area back-gate voltage, thereby mimicking the metal induced doping effect. A back-gate voltage sweep enables identifying two distinct resistance peaks-a result of the combined impact of the graphene cones in the contact and in the channel region. Comparing our experimental data with simulations allows extracting the coupling strength between metal and graphene and also estimating the magnitude of the metal-induced doping concentration in the case of palladium contacts. In contrast to conventional metal-semiconductor contacts, our simulations predict a decreased on-current for increased coupling strength in graphene field-effect transistors.
引用
收藏
页码:513 / 519
页数:7
相关论文
共 50 条
  • [41] Properties of graphene-metal contacts probed by Raman spectroscopy
    Xu, Hejun
    Wu, Xing
    Li, Xinming
    Luo, Chen
    Liang, Fang
    Orignac, Edmond
    Zhang, Jian
    Chu, Junhao
    CARBON, 2018, 127 : 491 - 497
  • [42] Physical model of the contact resistivity of metal-graphene junctions
    Chaves, Ferney A.
    Jimenez, David
    Cummings, Aron W.
    Roche, Stephan
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (16)
  • [43] Electronic transport across metal-graphene edge contact
    Gong, Cheng
    Zhang, Chenxi
    Oh, Young Jun
    Wang, Weichao
    Lee, Geunsik
    Shan, Bin
    Wallace, Robert M.
    Cho, Kyeongjae
    2D MATERIALS, 2017, 4 (02):
  • [44] Physical Vapor Deposition of Metal Nanoparticles on Chemically Modified Graphene: Observations on Metal-Graphene Interactions
    Pandey, Priyanka A.
    Bell, Gavin R.
    Rourke, Jonathan P.
    Sanchez, Ana M.
    Elkin, Mark D.
    Hickey, Bryan J.
    Wilson, Neil R.
    SMALL, 2011, 7 (22) : 3202 - 3210
  • [45] Oxidation limited thermal boundary conductance at metal-graphene interface
    Brown, David B.
    Bougher, Thomas L.
    Cola, Baratunde A.
    Kumar, Satish
    CARBON, 2018, 139 : 913 - 921
  • [46] Active metal-graphene hybrid terahertz surface plasmon polaritons
    Feng, Mingming
    Zhang, Baoqing
    Ling, Haotian
    Zhang, Zihao
    Wang, Yiming
    Wang, Yilin
    Zhang, Xijian
    Hua, Pingrang
    Wang, Qingpu
    Song, Aimin
    Zhang, Yifei
    NANOPHOTONICS, 2022, 11 (14) : 3331 - 3338
  • [47] Transition metal contacts to graphene
    Politou, Maria
    Asselberghs, Inge
    Radu, Iuliana
    Conard, Thierry
    Richard, Olivier
    Lee, Chang Seung
    Martens, Koen
    Sayan, Safak
    Huyghebaert, Cedric
    Tokei, Zsolt
    De Gendt, Stefan
    Heyns, Marc
    APPLIED PHYSICS LETTERS, 2015, 107 (15)
  • [48] Doping graphene with metal contacts
    Giovannetti, G.
    Khomyakov, P. A.
    Brocks, G.
    Karpan, V. M.
    van den Brink, J.
    Kelly, P. J.
    PHYSICAL REVIEW LETTERS, 2008, 101 (02)
  • [49] Processing and mechanical properties of new hierarchical metal-graphene flakes reinforced ceramic matrix composites
    Smirnov, A.
    Peretyagin, P.
    Bartolome, J. F.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (12) : 3491 - 3497
  • [50] Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices
    何泽召
    杨克武
    蔚翠
    李佳
    刘庆彬
    芦伟立
    冯志红
    蔡树军
    Chinese Physics Letters, 2015, (11) : 122 - 125