Learning Spatiotemporal Features using 3DCNN and Convolutional LSTM for Gesture Recognition

被引:167
|
作者
Zhang, Liang [1 ]
Zhu, Guangming [1 ]
Shen, Peiyi [1 ]
Song, Juan [1 ]
Shah, Syed Afaq [2 ]
Bennamoun, Mohammed [2 ]
机构
[1] Xidian Univ, Sch Software, Xian, Shaanxi, Peoples R China
[2] Univ Western Australia, Nedlands, WA, Australia
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1109/ICCVW.2017.369
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gesture recognition aims at understanding the ongoing human gestures. In this paper, we present a deep architecture to learn spatiotemporal features for gesture recognition. The deep architecture first learns 2D spatiotemporal feature maps using 3D convolutional neural networks (3DCNN) and bidirectional convolutional long-short-term-memory networks (ConvLSTM). The learnt 2D feature maps can encode the global temporal information and local spatial information simultaneously. Then, 2DCNN is utilized further to learn the higher-level spatiotemporal features from the 2D feature maps for the final gesture recognition. The spatiotemporal correlation information is kept through the whole process of feature learning. This makes the deep architecture an effective spatiotemporal feature learner. Experiments on the ChaLearn LAP large-scale isolated gesture dataset (IsoGD) and the Sheffield Kinect Gesture (SKIG) dataset demonstrate the superiority of the proposed deep architecture.
引用
收藏
页码:3120 / 3128
页数:9
相关论文
共 50 条
  • [21] A 3DCNN-LSTM Multi-Class Temporal Segmentation for Hand Gesture Recognition
    Gionfrida, Letizia
    Rusli, Wan M. R.
    Kedgley, Angela E.
    Bharath, Anil A.
    ELECTRONICS, 2022, 11 (15)
  • [22] 3DCNN landslide susceptibility considering spatial-factor features
    Liu, Mengmeng
    Liu, Jiping
    Xu, Shenghua
    Chen, Cai
    Bao, Shuai
    Wang, Zhuolu
    Du, Jun
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2023, 11
  • [23] Human Activity Classification Using the 3DCNN Architecture
    Vrskova, Roberta
    Hudec, Robert
    Kamencay, Patrik
    Sykora, Peter
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [24] A View-invariant Skeleton Map with 3DCNN for Action Recognition
    Zhao, Yang
    Wen, Long
    Li, Shuguang
    Cheng, Hong
    Zhang, Chen
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2128 - 2132
  • [25] Spatiotemporal non-negative projected convolutional network with bidirectional NMF and 3DCNN for remaining useful life estimation of bearings
    Wang, Xu
    Wang, Tianyang
    Ming, Anbo
    Zhang, Wei
    Li, Aihua
    Chu, Fulei
    NEUROCOMPUTING, 2021, 450 : 294 - 310
  • [26] A hybrid approach for search and rescue using 3DCNN and PSO
    Mishra, Balmukund
    Garg, Deepak
    Narang, Pratik
    Mishra, Vipul
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (17): : 10813 - 10827
  • [27] Human Action Representation Learning Using an Attention-Driven Residual 3DCNN Network
    Ullah, Hayat
    Munir, Arslan
    ALGORITHMS, 2023, 16 (08)
  • [28] Hand Gesture Recognition Exploiting Handcrafted Features and LSTM
    Avola, Danilo
    Cinque, Luigi
    Emam, Emad
    Fontana, Federico
    Foresti, Gian Luca
    Marini, Marco Raoul
    Pannone, Daniele
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 500 - 511
  • [29] Proposing Gesture Recognition Algorithm Using Two-Stream Convolutional Network and LSTM
    Phat Nguyen Huu
    Tien Luong Ngoc
    Quang Tran Minh
    IEEE ICCE 2020: 2020 IEEE EIGHTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS (ICCE), 2021, : 427 - 432
  • [30] RETRACTED: Learning spatiotemporal features with 3D DenseNet and attention for gesture recognition (Retracted Article)
    Liu, Honegzhe
    Deng, Zhifang
    Xu, Cheng
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 2019,