Learning Spatiotemporal Features using 3DCNN and Convolutional LSTM for Gesture Recognition

被引:167
|
作者
Zhang, Liang [1 ]
Zhu, Guangming [1 ]
Shen, Peiyi [1 ]
Song, Juan [1 ]
Shah, Syed Afaq [2 ]
Bennamoun, Mohammed [2 ]
机构
[1] Xidian Univ, Sch Software, Xian, Shaanxi, Peoples R China
[2] Univ Western Australia, Nedlands, WA, Australia
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1109/ICCVW.2017.369
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gesture recognition aims at understanding the ongoing human gestures. In this paper, we present a deep architecture to learn spatiotemporal features for gesture recognition. The deep architecture first learns 2D spatiotemporal feature maps using 3D convolutional neural networks (3DCNN) and bidirectional convolutional long-short-term-memory networks (ConvLSTM). The learnt 2D feature maps can encode the global temporal information and local spatial information simultaneously. Then, 2DCNN is utilized further to learn the higher-level spatiotemporal features from the 2D feature maps for the final gesture recognition. The spatiotemporal correlation information is kept through the whole process of feature learning. This makes the deep architecture an effective spatiotemporal feature learner. Experiments on the ChaLearn LAP large-scale isolated gesture dataset (IsoGD) and the Sheffield Kinect Gesture (SKIG) dataset demonstrate the superiority of the proposed deep architecture.
引用
收藏
页码:3120 / 3128
页数:9
相关论文
共 50 条
  • [1] Continuous Gesture Segmentation and Recognition Using 3DCNN and Convolutional LSTM
    Zhu, Guangming
    Zhang, Liang
    Shen, Peiyi
    Song, Juan
    Shah, Syed Afaq Ali
    Bennamoun, Mohammed
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (04) : 1011 - 1021
  • [2] Hand Gesture Recognition by Using 3DCNN and LSTM with Adam Optimizer
    Jiang, Siyu
    Chen, Yimin
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 743 - 753
  • [3] Hand Gesture Recognition for Sign Language Using 3DCNN
    Al-Hammadi, Muneer
    Muhammad, Ghulam
    Abdul, Wadood
    Alsulaiman, Mansour
    Bencherif, Mohamed A.
    Mekhtiche, Mohamed Amine
    IEEE ACCESS, 2020, 8 : 79491 - 79509
  • [4] Dynamic Hand Gesture Recognition Using 3DCNN and LSTM with FSM Context-Aware Model
    Hakim, Noorkholis Luthfil
    Shih, Timothy K.
    Arachchi, Sandeli Priyanwada Kasthuri
    Aditya, Wisnu
    Chen, Yi-Cheng
    Lin, Chih-Yang
    SENSORS, 2019, 19 (24)
  • [5] Learning Spatiotemporal Features With 3DCNN and ConvGRU for Video Anomaly Detection
    Wang, Xin
    Xie, Weixin
    Song, Jiayi
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 474 - 479
  • [6] Hand Gesture Recognition for Sign Languages Using 3DCNN for Efficient Detection
    Elangovan, Taranya
    Annie, R. Arockia Xavier
    Sundaresan, Keerthana
    Pradhakshya, J. D.
    COMPUTER METHODS, IMAGING AND VISUALIZATION IN BIOMECHANICS AND BIOMEDICAL ENGINEERING II, 2023, 38 : 215 - 233
  • [7] Strong Spatiotemporal Radar Echo Nowcasting Combining 3DCNN and Bi-Directional Convolutional LSTM
    Chen, Suting
    Zhang, Song
    Geng, Huantong
    Chen, Yaodeng
    Zhang, Chuang
    Min, Jinzhong
    ATMOSPHERE, 2020, 11 (06)
  • [8] 3DCNN Performance in Hand Gesture Recognition Applied to Robot Arm Interaction
    Castro-Vargas, J.
    Zapata-Impata, B.
    Gil, P.
    Garcia-Rodriguez, J.
    Torres, F.
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 802 - 806
  • [9] A Lightweight Driver Drowsiness Detection System Using 3DCNN With LSTM
    Alameen, Sara A.
    Alhothali, Areej M.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (01): : 895 - 912
  • [10] Short-Term Wind Speed and Direction Forecasting by 3DCNN and Deep Convolutional LSTM
    Sari, Anggraini Puspita
    Hiroshi, Suzuki
    Takahiro, Kitajima
    Takashi, Yasuno
    Prasetya, Dwi Arman
    Arifuddin, Rahman
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (11) : 1620 - 1628