Spectrometric Evidence of the Synergy between Formic Acid and Hydrazine on Their Electro-Oxidation

被引:2
|
作者
Machado, Eduardo G. [1 ]
Delmonde, Marcelo V. F. [1 ]
Varela, Hamilton [1 ]
机构
[1] Univ Sao Paulo, Inst Chem Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
OSCILLATORY ELECTROOXIDATION; PLATINUM-ELECTRODE; FUEL-CELLS; OXIDATION; BEHAVIOR; ELECTROCHEMISTRY; ADSORPTION; HYDROGEN; METHANOL;
D O I
10.1149/2.1291709jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electro-oxidation of formic acid on platinum electrodes has been on the spotlight for the last decade since it presents an apparent simple, yet intricate mechanism with three known reaction pathways. Despite the formation of CO, a strongly adsorbed intermediate, it was reported an interesting behavior when hydrazine is added in this solution. The simultaneous oxidation of formic acid and hydrazine was argued to be additive, meaning that both molecules would be oxidized without one interfering to the other. However, recently, it was suggested that this process would proceed synergistically. In this work, we aim at understanding how both molecules are oxidized on a platinum surface by monitoring the formation of gaseous products with Differential Electrochemical Mass Spectrometry (DEMS). The chosen pH was acidic (similar to 0.3) and the working electrode employed was a platinum sputtered Teflon membrane. The results showed that the signal of the ratio mass/charge 44 (related to CO2 production) for the formic acid and hydrazine system exhibited a new peak at lower potentials (c. a. 0.55 V), where the oxidation of formic acid would not proceed in the absence of hydrazine. The enhanced production of CO2 in the presence of hydrazine, which does not contain any carbon on its structure, yields the spectrometric proof that a more-than-additive mechanism takes place when oxidizing the mixture. These results open a new perspective for the study of the mechanism of the formic acid oxidation and to the development of new mixed fuels for energy conversion devices. (C) 2017 The Electrochemical Society. All rights reserved.
引用
收藏
页码:H647 / H650
页数:4
相关论文
共 50 条
  • [31] Platinum-macrocycle co-catalysts for electro-oxidation of formic acid
    Zhou, Xiaochun
    Liu, Changpeng
    Liao, Jianhui
    Lu, Tianhong
    Xing, Wei
    JOURNAL OF POWER SOURCES, 2008, 179 (02) : 481 - 488
  • [32] Facilitated Electro-Oxidation of Formic Acid at Nickel Oxide Nanoparticles Modified Electrodes
    El-Nagar, Gumaa A.
    Mohammad, Ahmad M.
    El-Deab, Mohamed S.
    El-Anadouli, Bahgat E.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) : F249 - F254
  • [33] Trends in Formic Acid Electro-Oxidation on Transition Metals Alloyed with Platinum and Palladium
    Elnabawy, Ahmed O.
    Murray, Ellen A.
    Mavrikakis, Manos
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (09): : 4374 - 4390
  • [34] Theoretical Elucidation of the Competitive Electro-oxidation Mechanisms of Formic Acid on Pt(111)
    Gao, Wang
    Keith, John A.
    Anton, Josef
    Jacob, Timo
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (51) : 18377 - 18385
  • [35] The Role of Electrodeposited Pd Catalyst Loading on the Mechanisms of Formic Acid Electro-Oxidation
    Milad Rezaei
    Seyed Hadi Tabaian
    Davoud Fatmehsari Haghshenas
    Electrocatalysis, 2014, 5 : 193 - 203
  • [36] The Role of Electrodeposited Pd Catalyst Loading on the Mechanisms of Formic Acid Electro-Oxidation
    Rezaei, Milad
    Tabaian, Seyed Hadi
    Haghshenas, Davoud Fatmehsari
    ELECTROCATALYSIS, 2014, 5 (02) : 193 - 203
  • [37] A bifunctional catalyst for efficient dehydrogenation and electro-oxidation of hydrazine
    Wang, Jun
    Khaniya, Asim
    Hu, Lin
    Beazley, Melanie J.
    Kaden, William E.
    Feng, Xiaofeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (37) : 18050 - 18056
  • [38] The Electro-Oxidation of Hydrazine: A Self-Inhibiting Reaction
    Miao, Ruiyang
    Compton, Richard G.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (06): : 1601 - 1605
  • [39] Advances in Direct Formic Acid Fuel Cells: Fabrication of Efficient Ir/Pd Nanocatalysts for Formic Acid Electro-Oxidation
    Al-Akraa, Islam M.
    Mohammad, Ahmad M.
    El-Deab, Mohamed S.
    El-Anadouli, Bahgat E.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (04): : 3282 - 3290
  • [40] Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation
    Zhou, Yang
    Hu, Xian-Chao
    Fan, Qizhe
    Wen, He-Rui
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (12) : 4587 - 4591