Resiliency in numerical algorithm design for extreme scale simulations

被引:2
|
作者
Agullo, Emmanuel [1 ]
Altenbernd, Mirco [2 ]
Anzt, Hartwig [3 ]
Bautista-Gomez, Leonardo [4 ]
Benacchio, Tommaso [5 ]
Bonaventura, Luca [5 ]
Bungartz, Hans-Joachim [6 ]
Chatterjee, Sanjay [7 ]
Ciorba, Florina M. [8 ]
DeBardeleben, Nathan [9 ]
Drzisga, Daniel [6 ]
Eibl, Sebastian [10 ]
Engelmann, Christian [11 ]
Gansterer, Wilfried N. [12 ]
Giraud, Luc [1 ]
Goddeke, Dominik [2 ]
Heisig, Marco [10 ]
Jezequel, Fabienne [13 ]
Kohl, Nils [10 ]
Li, Xiaoye Sherry [14 ]
Lion, Romain [15 ]
Mehl, Miriam [2 ]
Mycek, Paul [16 ]
Obersteiner, Michael [6 ]
Quintana-Orti, Enrique S. [17 ]
Rizzi, Francesco [18 ]
Ruede, Ulrich [10 ,16 ]
Schulz, Martin [6 ]
Fung, Fred [19 ]
Speck, Robert [20 ]
Stals, Linda [19 ]
Teranishi, Keita [21 ]
Thibault, Samuel [15 ]
Thoennes, Dominik [10 ]
Wagner, Andreas [6 ]
Wohlmuth, Barbara [6 ]
机构
[1] INRIA, Sophia Antipolis, France
[2] Univ Stuttgart, Stuttgart, Germany
[3] KIT Karlsruher Inst Technol, Karlsruhe, Germany
[4] Barcelona Supercomp Ctr, Barcelona, Spain
[5] Politecn Milan, Milan, Italy
[6] Tech Univ Munich, Munich, Germany
[7] NVIDIA Corp, Santa Clara, CA USA
[8] Univ Basel, Basel, Switzerland
[9] Los Alamos Natl Lab, Los Alamos, NM USA
[10] Univ Erlangen Nurnberg, Nurnberg, Germany
[11] Oak Ridge Natl Lab, Oak Ridge, TN USA
[12] Univ Vienna, Vienna, Austria
[13] Univ Paris 2, Paris, France
[14] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[15] Univ Bordeaux, Bordeaux, France
[16] CERFACS, Toulouse, France
[17] Univ Politecn Valencia, Valencia, Spain
[18] NexGen Analyt, Sheridan, WY USA
[19] Australian Natl Univ, Canberra, ACT, Australia
[20] Forschungszentrum Julich, Julich, Germany
[21] Sandia Natl Labs, Livermore, CA 94550 USA
关键词
Numerical algorithms; parallel computer architecture; fault tolerance; resilience; ASYNCHRONOUS OPTIMIZED SCHWARZ; FAULT-TOLERANCE; ITERATIVE METHODS; ERROR-DETECTION; SCIENTIFIC APPLICATIONS; CONJUGATE-GRADIENT; PERFORMANCE; RECOVERY; COMMUNICATION; SCHEME;
D O I
10.1177/10943420211055188
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work is based on the seminar titled 'Resiliency in Numerical Algorithm Design for Extreme Scale Simulations' held March 1-6, 2020, at Schloss Dagstuhl, that was attended by all the authors. Advanced supercomputing is characterized by very high computation speeds at the cost of involving an enormous amount of resources and costs. A typical large-scale computation running for 48 h on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh, corresponding to about 100k Euro in energy cost for executing 10(23) floating-point operations. It is clearly unacceptable to lose the whole computation if any of the several million parallel processes fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the whole computation be declared invalid? What about the notion of reproducibility itself: should this core paradigm of science be revised and refined for results that are obtained by large-scale simulation? Naive versions of conventional resilience techniques will not scale to the exascale regime: with a main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to background storage at frequent intervals will create intolerable overheads in runtime and energy consumption. Forecasts show that the mean time between failures could be lower than the time to recover from such a checkpoint, so that large calculations at scale might not make any progress if robust alternatives are not investigated. More advanced resilience techniques must be devised. The key may lie in exploiting both advanced system features as well as specific application knowledge. Research will face two essential questions: (1) what are the reliability requirements for a particular computation and (2) how do we best design the algorithms and software to meet these requirements? While the analysis of use cases can help understand the particular reliability requirements, the construction of remedies is currently wide open. One avenue would be to refine and improve on system- or application-level checkpointing and rollback strategies in the case an error is detected. Developers might use fault notification interfaces and flexible runtime systems to respond to node failures in an application-dependent fashion. Novel numerical algorithms or more stochastic computational approaches may be required to meet accuracy requirements in the face of undetectable soft errors. These ideas constituted an essential topic of the seminar. The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with expertise in exascale computing to discuss novel ways to make applications resilient against detected and undetected faults. In particular, participants explored the role that algorithms and applications play in the holistic approach needed to tackle this challenge. This article gathers a broad range of perspectives on the role of algorithms, applications and systems in achieving resilience for extreme scale simulations. The ultimate goal is to spark novel ideas and encourage the development of concrete solutions for achieving such resilience holistically.
引用
收藏
页码:251 / 285
页数:35
相关论文
共 50 条
  • [41] The Resiliency Scale for Young Adults
    Prince-Embury, Sandra
    Saklofske, Donald H.
    Nordstokke, David W.
    JOURNAL OF PSYCHOEDUCATIONAL ASSESSMENT, 2017, 35 (03) : 276 - 290
  • [43] Numerical meso scale simulations of multiaxially loaded concrete
    Bongers, JPW
    VanGeel, HJGM
    ADVANCES IN FRACTURE RESEARCH, VOLS 1-6, 1997, : 949 - 956
  • [44] Design and evaluation of bench-scale tank experiments for the quantification of transverse dispersion using numerical simulations
    Ballarini, E.
    Bauer, S.
    Eberhardt, C.
    Rolle, M.
    Grathwohl, P.
    Beyer, C.
    GQ10: GROUNDWATER QUALITY MANAGEMENT IN A RAPIDLY CHANGING WORLD, 2011, 342 : 255 - +
  • [45] Numerical simulations with the meso-β-scale model of the DWD
    Doms, G.
    Forschungsbericht - Deutsche Forschungsanstalt fuer Luft - und Raumfahrt, DLR-FB, 1994, (94-18): : 179 - 205
  • [46] Resiliency Across Cultures: A Validation of the Resiliency Scale for Young Adults
    Wilson, Claire A.
    Plouffe, Rachel A.
    Saklofske, Donald H.
    Di Fabio, Annamaria
    Prince-Embury, Sandra
    Babcock, Sarah E.
    JOURNAL OF PSYCHOEDUCATIONAL ASSESSMENT, 2019, 37 (01) : 14 - 25
  • [47] Numerical simulations of a reacting gas mixture at the hydrodynamic scale
    Monaco, R
    Bianchi, MP
    Pieraccini, S
    Puppo, G
    WASCOM 2003: 12TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, PROCEEDINGS, 2004, : 334 - 340
  • [48] Numerical simulations for electromagnetic power module design
    Cottet, Didier
    Hartmann, Samuel
    Schlapbach, Ulrich
    PROCEEDINGS OF THE 18TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES & ICS, 2006, : 209 - +
  • [49] Numerical simulations for acoustic design of noise reduction
    Tanaka, Toshimitsu
    Kinoshita, Shinichi
    Kimura, Yasumasa
    Utsuno, Hideo
    Tsugihashi, Kazuki
    R and D: Research and Development Kobe Steel Engineering Reports, 2001, 51 (03): : 58 - 63
  • [50] A stabilization algorithm for geodynamic numerical simulations with a free surface
    Kaus, Boris J. P.
    Muehlhaus, Hans
    May, Dave A.
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2010, 181 (1-2) : 12 - 20