A new nonarithmetic lattice in PU(3,1)

被引:4
|
作者
Deraux, Martin [1 ]
机构
[1] Univ Grenoble Alpes, Inst Fourier, Gieres, France
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2020年 / 20卷 / 02期
关键词
REFLECTION GROUPS;
D O I
10.2140/agt.2020.20.925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the arithmeticity of the Couwenberg-Heckman-Looijenga lattices in PU(n, 1), and show that they contain a nonarithmetic lattice in PU(3, 1) which is not commensurable to the nonarithmetic Deligne-Mostow lattice in PU(3, 1) .
引用
收藏
页码:925 / 963
页数:39
相关论文
共 50 条
  • [1] Nonarithmetic affine invariant orbifolds in Hodd(2,2) and H(3,1)
    Ygouf, Florent
    GEOMETRIAE DEDICATA, 2023, 217 (04)
  • [2] 1-AZIDOISOCHROMENES - A NEW ROUTE TO 3,1-BENZOXAZEPINES
    LEROUX, JP
    DESBENE, PL
    CHERTON, JC
    JOURNAL OF HETEROCYCLIC CHEMISTRY, 1981, 18 (04) : 847 - 849
  • [3] Synthesis of novel [3,1]-benzothiazepine and [3,1]-benzoxazepine derivatives with antitumoral activity
    Martinez, Walter R.
    Militao, Gardenia C. G.
    da Silva, Teresinha G.
    Silva, Ricardo O.
    Menezes, Paulo H.
    RSC ADVANCES, 2014, 4 (28): : 14715 - 14718
  • [4] The Apostle in Hebrewa 3,1
    Swetnam, James
    BIBLICA, 2008, 89 (02) : 252 - 262
  • [5] A note on (3,1) and (3,2) separating systems and bound for (3,1) separating system
    Rega, B.
    Durairajan, C.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (07)
  • [6] New Nonarithmetic Complex Hyperbolic Lattices II
    Deraux, Martin
    Parker, John R.
    Paupert, Julien
    MICHIGAN MATHEMATICAL JOURNAL, 2021, 70 (01) : 133 - 205
  • [7] On a class of (-3,1)-exceptional p(1)
    Ohsawa, T
    COMPLEX ANALYSIS AND GEOMETRY, 1996, 173 : 369 - 376
  • [8] EFFICIENT ALGORITHMS FOR (3,1) GRAPHS
    WALSH, AM
    BURKHARD, WA
    INFORMATION SCIENCES, 1977, 13 (01) : 1 - 10
  • [9] The Achilles' heel of O(3,1)?
    Floyd, W
    Weber, B
    Weeks, J
    EXPERIMENTAL MATHEMATICS, 2002, 11 (01) : 91 - 97
  • [10] ON (3,1)*-COLORING OF PLANE GRAPHS
    Xu, Baogang
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 23 (01) : 205 - 220