A note on (3,1) and (3,2) separating systems and bound for (3,1) separating system

被引:0
|
作者
Rega, B. [1 ]
Durairajan, C. [1 ]
机构
[1] Bharathidasan Univ, Tiruchirappalli 620024, Tamil Nadu, India
关键词
Separating system; intersecting code; linear code; transition path; (3; 1); and; 2) separating systems; INTERSECTING CODES;
D O I
10.1142/S179383092250149X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Separating codes have been studied due to their applications to digital finger printing, the state assignments, automata theory and to construct hash functions. In this paper, we study the necessary and sufficient conditions for a code to be a (3, 1) and (3, 2)-separating systems for q-ary level and also satisfy its intersecting properties. We also construct a bound for (3, 1) separating system.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A note on (3,1)*-choosable toroidal graphs
    Xu, Baogang
    Yu, Qinglin
    UTILITAS MATHEMATICA, 2008, 76 : 183 - 189
  • [2] Note on packings in Grassmannian space G(3,1)
    Tibor Tarnai
    Journal of Mathematical Chemistry, 1998, 23 : 415 - 419
  • [3] Synthesis of novel [3,1]-benzothiazepine and [3,1]-benzoxazepine derivatives with antitumoral activity
    Martinez, Walter R.
    Militao, Gardenia C. G.
    da Silva, Teresinha G.
    Silva, Ricardo O.
    Menezes, Paulo H.
    RSC ADVANCES, 2014, 4 (28): : 14715 - 14718
  • [4] Some Infinite Classes of Optimal (v, {3, 4}, 1, Q)-OOCs with Q ∈ {(1/3,2/3), (2/3,1/3)}
    Jiang, Jing
    Wu, Dianhua
    Lee, Moon Ho
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1795 - 1811
  • [5] THE COMPLETE SYSTEM OF THE BINARY (3,1) FORM
    TODD, JA
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1946, 42 (03): : 196 - 205
  • [6] The Apostle in Hebrewa 3,1
    Swetnam, James
    BIBLICA, 2008, 89 (02) : 252 - 262
  • [7] ON D=2(1/3,1/3) SUPERSYMMETRIC THEORIES .1.
    SAIDI, EH
    SEDRA, MB
    ZEROUAOUI, J
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (07) : 1567 - 1580
  • [8] Moduli spaces ℳ2,1 and ℳ3,1
    Yu. Yu. Kochetkov
    Functional Analysis and Its Applications, 2010, 44 : 118 - 124
  • [9] ON D=2(1/3,1/3) SUPERSYMMETRIC THEORIES .2.
    SAIDI, EH
    SEDRA, MB
    ZEROUAOUI, J
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (11) : 2705 - 2714
  • [10] On sharp characters of type {-1,3} or {-3,1}
    Adhami, S. Roghayeh
    Iranmanesh, Ali
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (01)