Long term fixation instability: Nonlinear (chaotic) dynamics

被引:0
|
作者
Schmeisser, ET
Ness, JW
Zwick, H
Lund, DJ
Stuck, BE
机构
[1] WRAIR, Dept Med Res, Brooks AFB, TX USA
[2] AFRL, HEDO, Litton TASC, San Antonio, TX USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
337B297
引用
收藏
页码:S63 / S63
页数:1
相关论文
共 50 条
  • [31] Nonlinear dynamics and intermittency in a long-term copepod time series
    Schmitt, Francois G.
    Molinero, Juan Carlos
    Brizard, Sylvie Zongo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) : 407 - 415
  • [32] Nonlinear matter wave dynamics with a chaotic potential
    Gardiner, S.A.
    Jaksch, D.
    Dum, R.
    Cirac, J.I.
    Zoller, P.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (02): : 023612 - 023611
  • [33] Chaotic Dynamics of a Josephson Junction with Nonlinear Damping
    Li Fei
    Pan Chang-Ning
    Zhang Dong-Xia
    Tang Li-Qiang
    CHINESE PHYSICS LETTERS, 2010, 27 (05)
  • [34] Nonlinear and chaotic dynamics of a vibratory conveying system
    Schiller, Simon
    Perchtold, Dominik
    Steiner, Wolfgang
    NONLINEAR DYNAMICS, 2023, 111 (11) : 9799 - 9814
  • [35] Nonlinear dynamics and control of symmetric chaotic systems
    Yu, JJ
    Zhang, MX
    Xu, HB
    ACTA PHYSICA SINICA, 2004, 53 (11) : 3701 - 3705
  • [36] Nonlinear and chaotic dynamics of a vibratory conveying system
    Simon Schiller
    Dominik Perchtold
    Wolfgang Steiner
    Nonlinear Dynamics, 2023, 111 : 9799 - 9814
  • [37] Chaotic dynamics of hardening nonlinear isolation device
    Huan, Shi
    Tao, Wei-Jun
    Zhu, Shi-Jian
    Jiang, Guo-Ping
    Li, Xiao-Yong
    Zhendong yu Chongji/Journal of Vibration and Shock, 2011, 30 (11): : 245 - 248
  • [38] OBSERVATION OF CHAOTIC DYNAMICS OF COUPLED NONLINEAR OSCILLATORS
    VANBUSKIRK, R
    JEFFRIES, C
    PHYSICAL REVIEW A, 1985, 31 (05): : 3332 - 3357
  • [39] VALIDATING IDENTIFIED NONLINEAR MODELS WITH CHAOTIC DYNAMICS
    AGUIRRE, LA
    BILLINGS, SA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (01): : 109 - 125
  • [40] Modeling chaotic evolution with nonlinear Langevin dynamics
    Tao, T
    Fujisaka, H
    PROGRESS OF THEORETICAL PHYSICS, 2000, 104 (05): : 925 - 941