Geometry of exceptional super Yang-Mills theories

被引:7
|
作者
Rios, Michael [1 ]
Marrani, Alessio [2 ,3 ]
Chester, David [4 ]
机构
[1] Dyon ICMQG, Los Angeles, CA 90032 USA
[2] Museo Stor Fis, Via Panisperna 89A, I-00184 Rome, Italy
[3] Ctr Studi & Ric Enrico Fermi, Via Panisperna 89A, I-00184 Rome, Italy
[4] UCLA, Dept Phys & Astron, Los Angeles, CA 90024 USA
关键词
LIE-ALGEBRAS; SUPERSYMMETRY; SUPERGRAVITY; DIMENSIONS; DUALITY; SPACE;
D O I
10.1103/PhysRevD.99.046004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Some time ago, Bars found D = 11 + 3 supersymmetry and Sezgin proposed super Yang-Mills theory (SYM) in D = 11 + 3. Using the "magic star" projection of e(8)(-24), we show that the geometric structure of SYM's in 12 + 4 and 11 + 3 space-time dimensions descends to the affine symmetry of the space AdS(4) circle times S-8. By reducing to transverse transformations along maximal embeddings, the near-horizon geometries of the M2 brane (AdS(4) circle times S-7) and M5 brane (AdS(7) circle times S-4) of M-theory are recovered. Utilizing the recently introduced " exceptional periodicity" (EP) and exploiting the embedding of semisimple rank-3 Jordan algebras into rank-3 T-algebras of special type yields the spaces AdS(4) circle times S-8n and AdS(8n-1) circle times S-5 with reduced subspaces AdS(4) circle times S8n-1 and AdS(8n-1) circle times S-4, respectively. As such, EP describes the nearhorizon geometries of an infinite class of novel exceptional SYM's in (8n + 3) + 3 dimensions that generalize M-theory for n = 1. Remarkably, the n = 3 level hints at M2 and M21 branes as solutions of bosonic M-theory and gives support for Witten's monstrous AdS/CFT construction.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] STABILITY IN YANG-MILLS THEORIES
    TAUBES, CH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (02) : 235 - 263
  • [32] REGGEIZATION IN YANG-MILLS THEORIES
    TYBURSKI, L
    [J]. PHYSICS LETTERS B, 1975, 59 (01) : 49 - 52
  • [33] SUPERSYMMETRIC YANG-MILLS THEORIES
    BRINK, L
    SCHWARZ, JH
    SCHERK, J
    [J]. NUCLEAR PHYSICS B, 1977, 121 (01) : 77 - 92
  • [34] YANG-MILLS STRING THEORIES
    ZACHOS, CK
    [J]. NUCLEAR PHYSICS B, 1977, 125 (01) : 52 - 60
  • [35] NONLINEAR YANG-MILLS THEORIES
    SCHOUTENS, K
    SEVRIN, A
    VANNIEUWENHUIZEN, P
    [J]. PHYSICS LETTERS B, 1991, 255 (04) : 549 - 553
  • [36] RENORMALIZATION OF YANG-MILLS THEORIES
    TONIN, M
    [J]. LETTERE AL NUOVO CIMENTO, 1974, 9 (14): : 541 - 548
  • [37] On the internal structure of dyons in N=4 super Yang-Mills theories
    Narayan, K.
    [J]. PHYSICAL REVIEW D, 2008, 77 (04):
  • [38] Spontaneous SUSY breaking in super Yang-Mills theories and their chiral structure
    Minkowski, P
    [J]. INTERNATIONAL EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS, 1999, : 926 - 935
  • [39] Spontaneous SUSY breaking in N=2 super Yang-Mills theories
    Minkowski, P
    Bergamin, L
    [J]. HIGH ENERGY PHYSICS, VOLS I AND II, 2001, : 1387 - 1388
  • [40] Topological model for domain walls in (super-)Yang-Mills theories
    Dierigl, Markus
    Pritzel, Alexander
    [J]. PHYSICAL REVIEW D, 2014, 90 (10):